Doctral Dissertation

Characterization and Isomerization
of (all-E)-Lycopene Derived from
Natural Origin

Masaki Honda

Research & Development Division, Kagome Co., Ltd.,
Nishitomiyama, Nasushiobara, Japan

February 2016



Graphica abstract

High bioavailability
High antioxidant capacity

-

( \ ( Z-Isomers of lycopene \

(all-E)-Lycopene

+ Heating
- Photoirradiation with sensitizers
« Catalyst (iron(lll) chloride)

+ Heating in vegetable oils

Spectral characterization

2 N
| oty !
' + UV-vis spectra [
| — :L—| NMR spectra :
Purification | LTLFE | -T“CNMRspectra = pyfication
/



Abstract

Characterization of (ak)- and (1Z)-lycopene purified from natural origin, and
isomerization of (alE)-lycopene taZ-isomers by heating, photoirradiation, and catalyst
were demonstrated.

A large amount of (alE)-lycopene was successfully purified from tomatstpaising
an improved method that included a procedure tdwagstalline powder with acetone.
The melting point of (alk)-lycopene was determined to be 173.2 °C by diffeat
scanning calorimetry (DSC) measurements. Bathocierghifts were observed in the
absorption maxima of all solvents tested (at mosg6anm shift fori2 in carbon
disulfide, as was observed in hexane) and werenganied by absorbance decreases,
namely, a hypochromic effect, showing a higher elation between the position and
the intensity of the main absorption bands. Thibdehromic shift was dependent upon
the polarizability of the solvent rather than itdgrity. The structure of (al)-lycopene
in CDCk and GDs was identified on the basis of one- and two-dinmred nuclear
magnetic resonance (NMR) spectra, includitd and *C NMR, homonuclear
correlation spectroscopy*H-'H COSY), heteronuclear multiple-quantum coherence

(HMQC), and heteronuclear multiplebond connectijiyvBC).
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(152)-Lycopene was prepared by thermal isomerizatiofatiE)-lycopene derived
from tomatoes, and isolated by using a series obrohtographies. The fine red
crystalline powder of (15-lycopene was obtained from 556 mg of @Hycopene
with a yield of 0.6 mg (purity: reversed-phase HRLI9Z.2%; normal-phase HPLC,
>09.9%), andH and'*C NMR spectra of the isomer were fully assignedrddwer, the
occurrence and availability of the Zfsomer were discussed on the basis of the
calculation method.

Thermal isomerization of (aHl)-lycopene was investigated in various organic
solvents. Isomerization ratios to tAeésomers of lycopene in Gi&l> and CHC4 over
24 h were calculated to be 19.7% and 11.4% at &rfeC77.8% and 48.4% at 50 °C,
respectively. In CkBrz, more than 60% was attained in the first seve@ird
independent of temperature. The predomiraigomers obtained thermally, /B and
(132)-lycopene, were purified and their absorption mexiand molar extinction
coefficients in hexane were determined for the tiree. Absorption values at 460 nm
were also measured for botfrisomers along with (alk)-lycopene to accurately
evaluate their concentrations by HPLC analysissTdpproach successfully revealed
that (1&)-lycopene formed predominantly in benzene or GHEI50 °C; in contrast,

the 2Z-isomer was preferentially obtained in &He or CHBr.
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Photoisomerization of (al)-lycopene to the corresponding-isomers was
investigated under visible to middle-infrared lightadiation in the presence of several
sensitizers, including edible ones. Highly purifigdl-E)-lycopene from tomato paste
was isomerized t&-isomers to the extent of 46.4-57.4% after irradmtwith the
sensitizers for 60 min in acetone, in which a thmdymamically-stable isomer of
(52)-lycopene was predominantly generated, while kiady-preferable (2)- and
(132)-lycopene were dominant without sensitizer. Exation of the time course of
photoisomerization demonstrated that the higheshésization efficiency (80.4%) was
attained using erythrosine as the sensitizer us8@+600 nm light irradiation in hexane
for 60 min, a protocol which successfully suppresge decomposition of lycopene.
(52)-Lycopene, reported as a more bioavailable isomes again predominantly
produced with erythrosine and rose bengal in ealuest.

Catalytic isomerization of (al)-lycopene taZ-isomers using iron(lll) chloride was
investigated and optimized under various conditiofissolvents, concentrations of
iron(lll) chloride, and reaction temperatures. To&l contents oZ-isomers converted
were higher in the order of CHI2(78.4%) > benzene (61.4%) > acetone (51.5%) >
ethyl acetate (50.8%) at 20 °C for 3 h using 110% mg/mL iron(Ill) chloride for 0.1

mg/mL (allE)-lycopene. However, the decomposition of lycopemas markedly

v



accelerated in CiCl2. As the concentration of catalyst increased intame the
Z-isomerization ratio of lycopene increased to mdran 80%, followed by rapid
decomposition of lycopene to undetectable leveisgus 4.0 x 10° mg/mL iron(lll)
chloride with the above concentration of (@JHycopene. Finally, greater isomerization
(79.9%) was attained at 60 °C in acetone for 3 thénpresence of 1.0 x F0mg/mL
iron(Ill) chloride, largely without decompositiorf tycopene (remaining ratio of total
amount of lycopene isomers after the reaction,%.5

As a method without use of organic solvents andd faadditives, thermal
isomerization of (alE)-lycopene in edible vegetable oils (perilla, liede grape seed,
soybean, corn, sesame, rapeseed, rice bran, saffleeed, olive, and sunflower seed
oil) was also investigated. Purified (&)-lycopene from tomatoes was converted to
Z-isomers in the range of 44.8 to 58.8% content,thedemaining ratio of total amount
of lycopene isomers without decomposition were eandrom 38.8 to 79.6% after
heating at 100 °C for 1 h in the vegetable oilsthBaf the values were exceedingly high
in sesame oil; 58.8% of totatisomers content and 78.3% of remaining lycopene. |
particular, (Z)-lycopene which has higher bioavailability andiaxilant capacity as
well as greater storage stability among Zhisomers was notably increased in that oil;

approximately threefold higher than the averagiefother vegetable oils.
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B3LYP: Becke-3-Lee-Yang-Parr
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TS: transition state
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Chapter 1

General introduction



1.1. Background

Lycopene is a well-known carotenoid found abundaintlvegetables and fruits with
a red color such as tomatoes, red carrots [1], maiens, and gacMomordica
cochinchinensis) [2] as well as in microorganisms such Bsnaliella salina [3],
Chlorella spp. [4,5], andBlakesea trispora [6,7]. Lycopene, like other carotenoids, is
responsible for the characteristic bright coloth#se organisms and plays a protective
role against oxidative stress [8—10]. The natueadfits of lycopene have been applied
not only to food and dietary supplements as ediblerants and antioxidants, but also
to medical approaches to cancer and arterioscterpsevention [11-13], taking
advantage of its physiological properties and kiggatibility. These useful functions of
lycopene, the molecular formula of which isldss, have been attributed to its chemical
structure containing many unsaturated bonds in hwheteven double bonds are
conjugated and more effectively allow the absomptad relatively long-wavelength
light and quench singlet oxygen. Therefore, marsgaechers have studied this useful
pigment, and published excellent reports from theédhe of the 20th century [14-19].
However, these studies were performed with lycopgaepared from different origins
and with different purification degrees, which ablgad to a misunderstanding due to

different values for basic physicochemical progesrtiUnder these circumstances, first



of all, we performed an extraction of (&)-lycopene (Figure 1A) with higher purity

from a tomato paste, and determined its physicdl @remical properties including

some spectrophotometric measurements.

The structural assignments and UV-vis spectralufeat of (Z)-, (92)- and

(132)-lycopene (Figure 1B-D), the predominaftisomers contained in processed

tomato products [20], were demonstrated throughstieessful acquisition of highly

purified preparations of the isomers by using &sesf chromatographies [21].

Figure 1. Chemical structures of the predominant isomersyobpgene contained in
processed tomato products: (A) (BHycopene; (B) (13)-lycopene; (C)
(92)-lycopene; (D) (52)-lycopene.



On the other hand, (Z¥lycopene (Figure 2) which would be generated from

(all-E)-lycopene by geometric isomerization was considiéoebe a putative isomer for

more than half a century, whereas a possibl&)(iEopene was synthesized via a

Wittig reaction [22,23]. In the present study, wevealed, for the first time, the

occurrence of (15Z)-lycopene from natural soura@snd a heat treatment by isolating

and identifying the isomer on the basis of morehsimated chromatographic and

spectroscopic methods, respectively. These chaizatien of (allE)-lycopene and the

Z-isomers is considered important to attain depghdiscussions about isomerization of

lycopene.

Figure 2. Chemical structure of (B-lycopene. (1%)-Lycopene in this study was
purified from a mixture of lycopene isomers, whietas prepared by heating

(all-E)-lycopene of a tomato origin.



Although lycopene has a large number of geometsimmers caused b¥/Z

isomerization at arbitrary sites within the 11 emgted double bonds (Figure 1), most

lycopene is present in the &lconfiguration (FigurelA) in plants, representirgpat

80-97% of total lycopene in tomatoes and relatedymts [20]. However, in the human

body, such as blood and prostate tissue, more 388 of total lycopene exists in the

Z-form (Figure1B-D) [20,24-29]. This suggests thatisomers of lycopene are more

bioavailable than the aB-configuration. In fact, according to experimentsng a

Caco-2 human intestinal cell model [30] and lympdnrwlated ferrets [29], the

bioavailability ofZ-isomers of lycopene was shown to be significagtlyater than that

of the allE-configuration. Also in humans, the intake of tomatuce rich irZ-form

lycopene brought about a marked increase of pldgoopene concentration, compared

with one rich in alle-isomer [31]. In additionZ-isomers of lycopene have been

reported to show a higher antioxidant capacity tienall£ configuration [32—34]. As

such, it is conceivable that intake &fisomers of lycopene could be preferable for

health reasons because of their good bioavaikalaitid functionality, and it is therefore

important to gain a better understanding of thenedzation of (allE)-lycopene to

Z-isomers and to develop the efficient methods ligg teaction. Since global trend is

toward natural and additive-free for foods and kijrand it is required to produce more



safely and accurately lycopene preparations riclZ-forms without those chemical
agents, we developed not only the isomerizatiorhatst using additives and organic
solvents putting importance on efficiency but atstditive- and organic solvent-free
isomerization method. Namely, we demonstrated shenerization of (alk)-lycopene

by heating, photoirradiation, and catalyst in ofgasolvent putting importance on
efficiency, and heating in edible vegetable oilsttipg importance on natural,

respectively, in this study.

1.2. Research objectives

This study focuses on characterization of EgH-and (1Z)-lycopene purified from
natural origin, and isomerization of (&)-lycopene taZ-isomers. First of all we aimed
to establish a purification method of (&)-lycopene from tomato paste, and acquired
its chemical and physical properties to deepentiterstanding of the/Z
iIsomerization reaction of lycopene in Chapter Zhimsame way, (Z)-lycopene which
has never identified from natural origin was pefiand characterized in Chapter 3.
Then we aimed to establish isomerization methodalbE)-lycopene taZ-isomers,
which were focused on both efficiency (Chapter 4a&) natural (Chapter 7). Detailed

objectives of this study as follows:



¢ To examine the fundamental data such as the mgivmt, UV-vis, IR, and NMR
spectra of purified (alE)-lycopene from tomato paste (Chapter 2).

¢ To characterize (I§-lycopene which has never identified from natwebin by
spectral methods such as UV—¥id, and**C NMR spectroscopy (Chapter 3).

¢ To develop the efficient isomerization method alf-E)-lycopene toZ-isomers by
heating, photoirradiation, and catalyst in orgastvent (Chapter 4-6).

¢ To develop the additive- and organic solvent-fisemerization method of

(all-E)-lycopene taz-isomers by heating in edible vegetable oils (Céiap).
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Chapter 2

Purification and
characterization of
(all-E)-lycopene from
tomato paste
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2.2. Introduction

Many researchers have studied lycopene and publiskeellent reports from the
middle of the 20th century [1-6]. However, thesedsts were performed with lycopene
prepared from different origins and with differgnirification degrees, which could lead
to a misunderstanding because of different valaesdsic physicochemical properties.
Under these circumstances, we performed an exdracti (all-£)-lycopene (Figure 1)
with higher purity from a tomato paste and detegdirits physical and chemical
properties, including some spectrophotometric measants. The results of our study
give new criteria for the identification of lycopemmnd contribute to the fundamental

chemistry of this carotenoid in the food science &thnology field.

17
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Figure 1. Chemical structure of (alE)-lycopene. The NOE correlations observed in the
two-dimensional NMR measurements are shown as duiwes in one half-side of the

symmetrical structure of the lycopene.
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2.3. Materials and methods

2.3.1. Chemicals

All reagents and solvents used in this study wenensarized in Table 1.

Table 1 Summery of reagents and solvents used in thiystud

regents grade supplier

acetic ether extra pure Nakaraitesuku Co., Ltd.

acetone specially prepared  Nakaraitesuku Co., Ltd.
acetonitrile specially prepared  Wako Pure Cheniwdistries, Ltd.
anisole extra pure Kishida Chemical Co., Ltd.
benzene extra pure Nakaraitesuku Co., Ltd.
benzonitrile special Wako Pure Chemical Industii¢d,
t-butyl methyl ether  extra pure Nakaraitesuku Ct,

carbon bisulfide special Wako Pure Chemical Indesti_td.
CDCls 99.8% Sceti Co., Ltd.

CHCls extra pure Wako Pure Chemical Industries, Ltd.
CHzCl2 extra pure Nakaraitesuku Co., Ltd.
cyclohexane specially prepared  Wako Pure Chemmichidtries, Ltd.
N,N-dimethylaniline  special Wako Pure Chemical IndestrLtd.
dimethyl phthalate special Nakaraitesuku Co., Ltd.

ethanol extra pure Nakaraitesuku Co., Ltd.

hexané extra pure Wako Pure Chemical Industries, Ltd.
methanol HPLC Sigma-Aldrich Co.

pyridine special Nakaraitesuku Co., Ltd.
tetrahydrofuram extra pure Wako Pure Chemical Industries, Ltd.

aUsed after distilling.

2.3.2. Extraction and purification of (all-E)-lycopene from tomato paste
All procedures were performed at room temperatundess otherwise indicated. A

total of 500 mL of CHCI2 was added to 50 g of tomato paste (Kagome Co., Tadyo,
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Japan; lycopene content, 8-12 g/kg) in an Erlenmiégsk, and the mixture was stirred
for 60 min in darkness. The organic layer was sspdrwith a separatory funnel, and
repetitive extraction was performed on the resglsaospension by the same volume of
CHzCl2. The solvent was evaporated on a rotary evapomatder a vacuum (170
mmHg) at 25 °C for 30 min. The crude extract (34§) montaining lycopene was
dissolved in 15 mL of benzene at 60 °C within teinutes, and recrystallized at 4 °C
for 4 h under shading. The resulting crystals weakected by suction filtration on a
Kiriyama funnel (No. 5B filter paper), rinsed witD0 mL of acetone, and dried
vacuo: 188 mg of fine red crystalline powder, M.p. 173@ (DSC). HPLC> 99.3%.
UV-vis: Table 1. IR (KBr): Table 2. NMR: Table3. WMB—FAB (/2): [M + H] * calcd

for CaoHs7, 537.4460; found, 537.4418.

2.3.3. UV-vis, FTIR, mass, and NMR spectroscopic alyses

UV-vis spectra of the purified lycopene were meedun organic solvents over a
scanning range of 200—600 nm, and Aheaxima of the compounds were determined.
Spectra were recorded with a Hitachi U-2910 spebimtometer (Tokyo, Japan).

IR spectrum of (alE)-lycopene was obtained by JASCO FT/IR 4100 (Tokysihg

the KBr disc in the range of 4000-400¢m
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The HRMS of (allE)-lycopene was recorded in the positive-ion modé-ARB+ on a
JOEL JMS-700T instrument (Tokyo), using 3-nitrobdratcohol as the matrix.

NMR spectra of (alE)-lycopene were recorded using a JEOL JMN-LA400480
NMR spectrometer at 400 MHZH) and 100 MHz {3C). Chemical shifts were recorded
as theo value (ppm) using TMS as an internal standard.c®pevere observed on

CDClz and GDes.

2.3.4. DSC analysis

The melting point of purified (alk)-lycopene was determined by DSC using a
DSC-60A system (Shimadzu, Kyoto, Japan). DSC measemts were performed with
aluminum sample pans and empty reference pans.tBeteample and reference were
scanned at a heating rate of 5 K/min from 303 t8 K7under a nitrogen atmosphere
with a flow rate of 50 mL/min. The mass of the sénpas 7 mg. All measurements

were performed in triplicate.

2.3.5. HPLC analysis
Reversed-phase HPLC analysis with a photodiodey attediector (SPD-M10AVP,

Shimadzu, Kyoto, Japan) was performed under thewolg conditions: column, YMC

18



Carotenoid (250 x 4.6 mm id., pm particles, YMC, Kyoto); solvent A,

methanol/MTBE/ HO (75:15:10, v/v/v); solvent B, methanol/MTBE®I (7:90:3,

viviv); gradient, started with 100% eluent A anddesh with 100% eluent B over a

period of 35 min; flow rate 3.0 mL/min; column teempture, 22 °C. A typical

chromatogram of the lycopene isomers was obtaingkd & retention time of and

absorption maxima at: (Zplycopene (24.6 min; 440.0, 465.0, 496.5 n#):-fjeak [7]

at 361 nm with relative intensity of 59.2%s/MD), (92)-lycopene (27.6 min; 441.0,

467.0, 497.5 nm;4)-peak at 361 nm with 13.7%s[D1), (all-E)-lycopene (31.9 min;

445.0, 472.5, 503.5 nm), andZj8ycopene (32.6 min; 445.0, 472.0, 503.5 nm). The

guantification of all lycopene was performed by lpeaea integration at 470 nm,

showing a reliable approximation for the analygisomers [8,9].

2.3.6. Computational analysis

In order to evaluate the validity of the experinsntalue, Ab initio and DFT

calculations on the infrared spectrum of @iycopene were performed with Gaussian

03 software using the B3LYP functional and 6-3d)3yasis set.
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2.4. Results and discussion
2.4.1. Physical Properties of (alE)-Lycopene

In this study, a large amount of (&)-lycopene was successfully purified from
tomato samples without laborious chromatographacgadures [10,11]. This improved
method included a procedure to wash crystalline dqewvwith acetone, in which the
solubility of (all-E)-lycopene was low (ca. 0.75 mg/mL) [12]. The toti@ld of the pure
(all-E) form (purity> 99.3% by HPLC) was at least 30% when the lycomamtent of
the tomato paste was considered. The DSC curvehépurified lycopene showed in
Figure 2. The melting point was determined fromdhset point of the DSC curve [13],
which was scanned at a heating rate of 5 K/min:peassible melting points of 163.8 °C
and 173.2 °C were observed. The lower value woddattributed to the lycopene
(2)-isomers arose from the (&) form because of the heating process. The cowfent
the (allE) form was reduced to 61.6% by reversed-phase HiBLEG/copene samples
after the DSC measurement. The melting point ¢fEplycopene was then determined

to be 173.2 °C, which was consistent with the valoiained by Manchand et al [5].
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Figure 2. DSC curve of the purified (al)-lycopene.

Lycopene has an electron spectrum characterize@léyen conjugated double
bonds, which geometrically impose a linear and lgighanar structure. The UV spectra
and summery of absorption maxima and moleculanettin coefficient of the purified
(all-E)-lycopene in thirteen organic solvents were showvedrigure 3 and Table 2,
respectively. In hexane, (d)}-lycopene showed strong absorption maxima at 502.5
471.0, and 444.0 nm with molar extinction coefiit&estimated as 168 x 3182 x
10°, and 118 x 1%) corresponding to vibrational transition energi€8—-0, 0-1, and 0-2,
respectively. The peak at approximately 360 nm,sihvealledZ-peak [7,14], was not
observed in this sample. Furthermore, absorptiorxima and molar extinction

coefficients with (allE)-lycopene were measured in various organic sadveot
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investigate the solvent effect on the electroniectium of the molecule. All values for

the maxima f2) of the fine structure in this study were also sistent with the

calculated values according to an empirical rule-[I7]. The valuesAg, A2, and As)

listed in this table were plotted as a functionmalvelength in Figure 4A. From these

results, bathochromic shifts in the absorption mmxiwere observed in all solvents

tested (at most a 36 nm shift f&rin carbon disulfide, as was observed in hexamg), a

were accompanied by absorbance decreases, narhglyoahromic effect, showing a

higher correlation between the position and thensity of the main absorption bands.

Although many studies suggested that the bathodbrehift had been independently

reported previously [18,19], the highly purifiedll{&)-lycopene had first enabled a

discussion of the solvent effect on this carotendlids bathochromic shift depends on

the polarizability of the solvent because of higirelation between them (Figure 4B)

[20], rather than on its polarity (data not showe revealed the solvent effect on the

electron spectra of (al)-lycopene for the first time. It has been diffictd evaluate the

solvent effect for (alE)-lycopene because of its different purificationadg with

different origins. This finding contributes to thendamental chemistry of carotenoids,

and will be a new criterion for the identificaticend evaluation of lycopene in

agriculture, food, and medical fields.
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Figure 3. Ultraviolet (UV) spectra of the purified (all}-lycopene in thirteen organic
solvents.
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Figure 4. Relationships between the absorption maxima andarmextinction
coefficients of (allE)-lycopene in various solvents (A), and betweenpblarizabilities
of the solvents and the absorption maxima (B). Vidlaes ofl1 (o), A2 (e), andAs (A)
are from Table 1. Polarizability of the solventcalculated as follows:nf-1)/(n*+2),

wheren is the refractive index of the solvent [22].

The IR spectrum of (alk)-lycopene was measured (Figure 5) and charadterist
absorptions are shown in Table 2, along with treadeulated by the Gaussian program.
Observed and calculated values from C-H and C=€lcétes, and C-H out-of-plane

attributed to the alkene as well as other origimste consistent with each other. This
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computational estimation with high fidelity woulcemend on the restriction of the

molecular motion of lycopene caused by the elewanugated double bonds. Therefore,

these observations will facilitate an evaluationtlod relative free energy of lycopene

(2)-isomer contained in foods or originate from hiealiaced isomerization.
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Figure 5. Infrared (IR) spectrum of the purified (&)-lycopene.
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Table 3. Infrared absorption bands of (&)-lycopene extracted and purified from

tomato paste and their calculated values

origin frequency (crm)
found calcd
C-H stretch, alkene 3038, 3072-3055,
3020 m 3033-3007 m
C-H stretch, methylene/methyl 2968, 2981-2962,
2912, 2926-2894,
2854 s 2894 mtos
C=C stretch 1627, 1552 w 1636, 1558 m
C-H deformation, methylene/methyl 1441 m 1460-1444 m
C-H deformation, methyl 1391, 1399-1375,
1364 m 1364-1350 m
C-H out-of-plane, 960 s 976-946 s

(E) disubstituted double bond

aCalculated by the Gaussian program.

2.4.2. NMR assignment of (alE)-lycopene

The structure of (alE)-lycopene has been identified on the basis of cared
two-dimensional NMR spectra includiri¢i- (Figure 6) and*C-NMR, H-'H-COSY
(homonuclear correlation spectroscopy), HMQC (lmteclear multiple-quantum
coherence), and HMBC (hetero-nuclear multiple-b@odnectivity). Chemical shifts
for proton and carbon signals of the @Hycopene in this work were good accordance
with those of the synthetic (al}-lycopene [20] (Table 3). Spectral data on

(all-E)-lycopene in CDCGlwere also independently reported by differentditeres [22—
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25]; however, some values reported were not cardisimong the previous studies, e.g.
for the coupling constants of protons H-C(11), HELCY and the chemical shift value
of carbon atoms C(14), C(14"). In our study witlerttughly purified lycopene, the
coupling constant values between H-C(11), H-C(&hJ H-C(10), H-C(10"), and
between H-C(11), H-C(11") and H-C(12), H-C(12") evereasured as 11.4 and 14.9
Hz, respectively. The chemical shift for C(14), €(lcould be assigned to the signal
observed at 132.64 ppm by the HMQC experiment,rafidement of the NMR signal
assignment of (alE)-lycopene was then achieved in CRCI

Measurements were subsequently performed in anetheent, GDs in expectation
of NMR signal charts distinct from those obtaineddDCk because of differences in
their physical properties such as polarity, resogaand viscosity. Proton antiC
signals in @Ds were preliminarily assigned by the results obtaim@dCDChk, and
ascertained byH homonuclear decoupling and the NOE differenceedrpents in
addition to the above two-dimensional measurem@itgire 1). As shown in Table 3,
chemical shifts in methyl protons between H-C(¥$)C(19") and H-C(20), H-C(20")
were discriminated in Des at 1.925 and 1.876 ppm respectively (Table 3),redme
these signals appeared as a singlet at 1.968 p@B @i (this study and the references

[23,24]). Furthermore, the coupling system betwide€(14), H-C(14") and H-C(15),
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H-C(15") could be analyzed ine@s, whereas their corresponding signals in CDCI

overlapped with H-C(8), H-C(8"), and H-C(11),

H-C(1 respectively and were

assigned to a multiplet. The observed spin sigonaliwed in the AA'BB” type system,

to which similar coupling was assigned in some tearoids such as prolycopene and

(92,9'2)-7,8,7",8 -tetrahydrolycopene [21,26], and thd agsignment ofH and '°C

signals was then given in Table 3. The unambiguetsrmination attained in this study

will also help to analyze theZ)-isomers occurring in natural sources and those

generated from the isomerization of (B)Hycopene by a heating process.

H20,20'
H19,19'
HG,G'
Hj Higg  Hiza7
H,
E;: Highe 22
2.0 N
6.5 6.0 5.5 5.0

ppm

Figure 6.H NMR spectrum of the purified (ai)-lycopene. (400 MHz, CDG).
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3.1. Table of contents

Spectral characterization

(152)-Lycopene

3.2. Introduction

Lycopene has a large number of geometric isomarsethbyE/Z isomerization at
arbitrary sites within the eleven conjugated douddeds, and 71 kinds @isomers are
theoretically possible [1]. However, it is a snadirt of them have been characterized by
spectral methods such as UV-vi$], and 13C NMR spectroscopy. The structural
assignments and UV-vis spectral features a&)-(5(92)- and (1Z)-lycopene, the
predominantZ-isomers generated during heat [1,2] or photoiatial treatment [3,4],
were demonstrated through the successful acquisatidnighly purified preparations of
the isomers by using a series of chromatograpRiesrhe other theoretically-possible
monoZ-isomer by heating, (IB-lycopene (Figure 1), was rationally synthesizeda
Wittig reaction [5,6], but could not be identifietliring the heat or photoirradiation

process, possibly because of thermodynamic indtalasihd the presence of a small
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amount of the lycopene isomer generated by isorussiz [7]. On the other hand, the
structure [8,9], thermal isomerization [10,11], dndavailability and function [12,13]
of a similar symmetrical carotenoid of @55-carotene have been extensively

examined.

Figure 1. Chemical structure of (B-lycopene. (1%)-Lycopene in this study was
purified from a mixture of lycopene isomers, whietas prepared by heating

(all-E)-lycopene of a tomato origin.

In the present study, (Zplycopene with high purity was prepared from a tunig of
lycopene isomers thermally converted from theEallerm of a tomato origin, and
structural characterization was performed by spéetrethods including UV-vistH,
and *C NMR spectroscopy. This results of this study wpitbvide an insight into
(152)-lycopene and validate previous descriptions okcsl properties of a

theoretically-synthesized Z&somer [14-19], including those of the synthetic
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(152)-lycopene [5,6].

3.3. Materials and methods

3.3.1. General

Analytical grade acetone, GEl2, DIEPA, ethanol and MTBE were obtained from

Nakaraitesuku Co., Ltd. (Kyoto, Japan), Cb®as obtained from Sceti Co., Ltd.

(Tokyo, Japan), and HPLC-grade methanol was oldaBigma-Aldrich Co. (St. Louis,

MO, USA). Hexane obtained from a solvent-dispenssygtem supplied by Glass

Contour (Nikko Hansen & Co., Ltd., Osaka, Japargenra nitrogen atmosphere after a

preliminary distillation. DFT calculations were fmmed with the Gaussian 09

software (Rev. D.01), and conformational search dease using CONFLEX 7 program

(Rev. B, Conflex corp., Tokyo) [20].

3.3.2. Preparation of (allE)-lycopene

(all-E)-Lycopene was isolated from tomato paste (Kagonwe, Ctd., Tokyo;

lycopene content, 8-12 g/kg) using procedures aind those previously described

[1,2], i.e., extraction with CECl2, recrystallization from benzene, and washing with

acetone and ethanol under shading conditions: 7p@fra fine red crystalline powder
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from 140 g of a tomato sample; reversed-phase HP99.0% purity. Purified

lycopene was stored at —80 °C until just before use

3.3.3. Thermal isomerization of lycopene

Purified (allE)-lycopene (110 mg), which was dissolved in 170 ehlbenzene, was

transferred into a 300-mL stainless steel pressassel (TP300KG, Unicontrols Co.,

Ltd., Chiba, Japan), purged with argon, and thextdteat 79 °C for 19 h in an oil bath.

These procedures were conducted on five batchine dycopene solution. The yield of

isomerization tZ-forms was estimated to be nearly 70% of all lycepsomers by the

reversed-phase HPLC method.

3.3.4. Isolation of (1Z)-lycopene

Purification of the 1B-isomer from the mixture of thermally-isomerizecdpene

was conducted using three-step column chromatograihprocedures were carried

out at room temperature, and light exposure wad kepa minimum throughout

purification. A batch of the lycopene mixture, whiwas isomerized in benzene, was

evaporated to dryness under reduced pressurehandlissolved in 5.0 mL of hexane.

The insoluble residues (ca. 40 mg), which mostlgstsied of (allE)-lycopene, were
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removed using a 0.2m polytetrafluoroethylene membrane filter (DISMIGFP,
Advantec, Tokyo) prior to chromatographic separetiolhe supernatant was divided
into six potions and repeatedly applied to HPLC tbree normal-phase columns
tandemly connected under the following conditionstumn, Nucleosil 300-5 (3 x
250-mm in length, 10-mm inner diametem®-particle size, GL Sciences Inc., Tokyo);
solvent, hexane/DIPEA (500:1, v/v); flow rate, 20GL/min; column temperature,
ambient; photodiode array detector (SPD-M10AVP,ng&tuzu, Kyoto, Japan). These
procedures were applied to the other four batced the fractions with retention times
of 49.5-52.0 min were collected and evaporated rimess, leaving 13.4 mg of a
red-brown substance. The resulting partially-pedfsample was dissolved in 5.0 mL of
hexane, and separated again under the same chgyagie conditions, except for the
solvent (hexane/DIPEA [2000:1, v/v]). The elutedctions with retention times of
56.0-60.0 min were combined, evaporated, and duieder reduced pressure. The
resulting red substances (2.6 mg) were dissolvetl5nmL of benzene, and added to
reversed-phase HPLC under the following conditi@meéumn, YMC Carotenoid (250 x
10-mm inner diameter, Bm particle size, YMC, Kyoto); solvent A,
methanol/MTBE/HO (75:15:10, v/v/v); solvent B, methanol/MTBE®I (7:90:3,

viviv); gradient, started with 100% eluent A anddesh with 100% eluent B over a

40



period of 35 min; flow rate 3.0 mL/min; column teempture, 22 °C. The fractions with
retention times of approximately 24.7 min were ectiéd and driech vacuo, resulting
in the 1%Z-isomer being obtained: 0.6 mg of fine red crystalpowder; reversed-phase
HPLC, 97.2% purity; normal-phase HPLE99.9%. The purity of (1&-lycopene by
reversed- and normal-phase HPLC was estimated ddy grea integration at 470 nm, as

previously reported [1,3].

3.3.5. NMR spectroscopy

The NMR spectra of (1H-lycopene were recorded on a JMN-LA400 FT NMR
spectrometer (JEOL, Tokyo) at 400 MHz ft and 100 MHz for3C. Chemical shifts
were recorded as a value (ppm) using tetramethylsilane as an intestahdard.

Spectra were observed irlls as well as CDGI

3.3.6. Computational analysis

The geometric optimization of (all}- and (1Z)-lycopene was performed with DFT
as implemented in Gaussian 09 using the B3LYP fonat and 6'31G(d) basis set
including a zero point vibrational energy corregtidPrior to the calculation for

(all-E)-lycopene, the structures of the conjugatedEgbelyenes, GHn+2 (N = 4-22,
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even number) were optimized at the ground singtates, and followed by the
methylated undecaenes TMTU (Figure 2A) and HMHW(Fe 2B). The structure of
HMHU was estimated using initial conformers at Biervals of the dihedral angles of
the free rotation in a stepwise manner for two legmgups, and (alE)-lycopene was
then estimated in the same way. The initial confdroms of (allE)-lycopene were also
ascertained using the CONFLEX method and MMFF94sefdield. (1Z)-lycopene
and the other mong-isomers were similarly optimized by referring ke tresults of the
all-E-isomer. Twisted TS geometries were obtained usin§S search. Vibrational
frequency calculations were carried out in all sate confirm the stationary point.
Energy differences between the ground state anel@@ronic energies corresponded to

the activation energy of the isomerization reaction

A\ TRV RV NV RN ORY NN NTR
B
WMV RN NN RNV NN RN N

Figure 2. Chemical structures of (A) TMTU and (B) HMHU.

3.4. Results and discussion
3.4.1. Isolation of (1Z)-lycopene thermally generated from a tomato sample

The occurrence of (B-lycopene from (alE)-lycopene during a heating has been
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suggested by several studies, and this has maedy based on analyses of UV-vis

spectra, in which th&-peak ratio of the isomes/Du, was estimated to be 75-79% in

a HPLC mobile phase [2,16,19]. However, the existenf theZ-isomer from a natural

source has not yet been demonstrated. In the pretely, a purification procedure for

(152)-lycopene was exploited using an elaborate HPIloGrtgjue. Prior to isolating the

Z-isomer, the geometric isomerization of (BJHycopene, which was purified from

tomato paste, was conducted by heating at 79 °@9dr under optimal conditions that

excluded oxygen and light irradiation. Among thesgible geometrical types for

lycopene in the isomerized mixture, any isomergaiaing theZ-configuration in the

molecule were considered to be more soluble in tHexane solvent than

(all-E)-lycopene [21]. The remaining (dl)-lycopene (40 mg in each batch; ca. 30% of

all isomers of lycopene) was effectively removedfiligation only, and the other crude

Z-isomers were then prepared using this simpleitmaation technique.

In the first chromatographic purification step,e®@rnormal-phase HPLC columns

connected in tandem were applied to separat@){¥6opene (retention time, 49.5-52.0

min; Ds/Du, 79% [2]) from the crude fraction (Figure 3A). Traio of (1%)-lycopene

to all isomers was estimated to be no more than b9§%omparisons with the peak

areas; taking into account the previous removalingbluble (allE)-lycopene, the
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amount of the 1Bisomer produced during the thermal process way wenall,

typically a few percent or less. These results ¢oeflect the relatively low generation

rate and/or relatively higher free energy of th&-idomer [7,22]. On the other hand,

large amounts of @- and (1Z)-lycopene were observed with peak retention tiofes

approximately 55 and 45 min, respectively, whicltassistent with previous findings

[2,17,19]. A second normal-phase HPLC was theniegpio the partially-purified

fraction under the same conditions as those forctthemns and mobile phase, except

for the amine concentration. HPLC separation eqdppith a reversed-phase column

was conducted on fractions abundant inZf¥ycopene, which resulted in 0.6 mg of the

highly purified 1Z-isomer (Figure 3B) being successfully obtainednfr656 mg of

(all-E)-lycopene as a starting material. The purity &Zjtlycopene was estimated to be

97.2% by reversed-phase HPLC analysis, in whichstmall amount of impurities

would have been (alB)-lycopene generated from the reversion ofZjllycopene to

(all-E)-lycopene during the chromatographic procedureabse the peak retention time

of approximately 33 min showed the BHisomer (Figure 3B), which was easily

removed in the purification process. Similar firggnwere previously observed in the

purification of other mon@isomers [2]. The actual purity of (Zplycopene was then

considered to be sufficiently high to be subjededstructural characterization using
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NMR spectroscopy, as the value estimated in nophake HPLC analysis was high

(>99.9%). Therefore, pure (Zplycopene was now obtained from the thermally

isomerized lycopene sample of a natural origin. fiike control of the concentration of

amine in the normal-phase HPLC eluent led to teeadiery of the isomer.

(152)
(1327)__ \

30 40 50 60 70 80

Retention time (min)

B (152)

Absorbance at 470 nm (a. u.)

L

0 10 20 30 40

Retention time (min)

Figure 3. Separation of (A) geometrical isomers of lycopegenerated during a

heating process, by normal-phase chromatograpkiyeaf&rst purification step (solvent:

hexane/DIPEA [500:1], v/v) and (B) purified @plycopene was then analyzed by
reversed-phase HPLC.
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3.4.2. Characterization of (12)-lycopene by NMR spectroscopy

As noted in many previous studies [2,14-19],Z)1%copene derived from natural
sources has been identified tentatively by DD ratio on the basis of UV-vis
spectroscopy i.e. the relative intensity of #peak at approximately 360 nm to the
absorption maximum of the isomer. In the presentystin order to confirm the
occurrence of (1B-lycopene from natural sources, an attempt to adiarize the
isomer was conducted using NMR spectroscopy instutivo-dimensional analyses as
well as'H and*3C NMR, in combination with comparisons to the spaladata obtained
from the synthesized (Zy»lycopene [5,6]. The spectral analyses of lycopene
demonstrated that the solubility of tBesomer in both CDGland GDs was higher
than that of (alE)-lycopene [21]; therefore, these spectra couldmssmsured at a
relatively higher concentration (1.0 mg/mL) in eadivent. This property facilitated
measurements, especially in the cas€®fand two-dimensional NMR analyses.

Proton (Figure 4) antfC spectra of the purified (Z%-lycopene were listed in Table
1 and Table 2, respectively. By considering diffees in the geometric structures of
(152)- and (allE)-lycopene, it is reasonable to assume that thgiddmer exhibited
more distinctive chemical shift values around taeter of the molecule as compared to

those of the alk-isomer, but had equivalent values at the termirfads example, the
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large and lower magnetic field shifts of H-C(14@at—C(14) in (152)-lycopene were
predictable because each proton was placed in diaetia anisotropy due to the
n-systems between C(13) and Cjl&nd vice versa for the H-C(15) and H-C)15
protons of the 1B&isomer [21]. The values of the chemical shift b4)-lycopene
around the center of the molecule were differemmfthose of thell-E form, and were
also consistent with the results obtained fromtsgtit data [5] for both nuclear species
in CDChk (Tables 1 and 2): for examplgy = 0.43 ppm for H-C(14) and H-C()4
-0.23 ppm for H-C(15) and H-C()5Similar results were obtained with the other
solvent GDs, and the chemical shift values of C(14), CJ14€(15), and C(1% on
(152)-lycopene were clearly different from those of #ileE-isomer. Furthermore, the
coupling constants for (B-lycopene in'H NMR, which were not reported even for
synthetic ones [5], were determined in both solveiihe coupling system between
H-C(14), H-C(14 and H-C(15), H-C(1» were observed separately isJs, whereas
their corresponding signals in CRQverlapped with those of H-C(11), H-C(Land
H-C(12), H-C(12), respectively, and could only be assigned to iplels (Table 1).
The observed spin signal i@ was attributed to the ABB’ type system and similar
coupling was recognized in some carotenoids, sushpmolycopene [5,8] and

(all-E)-lycopene [1], which had the centrosymmetric durces in their molecules. As
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described previously [1], NMR measurements of @noids in GDs in addition to

CDCls solvents effectively detected and discriminategcsal differences based on the

physical properties of the solvent, such as pglartsonance, and viscosity. This study

successfully confirmed the existence of Ltfcopene derived from a natural source

and the validity of the characterization of the thgtic lycopene [5,6] and others [14—

19]. The unambiguous determination attained in stusly will also assist in identifying

the unidentifiedZ-isomers occurring in natural sources and thosergéed from the

isomerization of lycopene during the heating amddiation process, especially for the

di-Z-isomer with a centrosymmetric structure such &58)- and (Z,9'2)-lycopene,

as well as with a I&configuration.

Hyg{Hyg) Hys{Hapl Heg{Hg)

e iy His{E BFL Hig{Hys) Hiz 17

L) (s, ol |
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Figure 4.'H NMR spectrum of the purified (Z%-lycopene. (400 MHz, CDG).
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3.4.3. Computational simulation of isomerization of (all-E)-lycopene to

(152)-lycopene and other monaZ-isomers.

A computational approach to examine the geometricebmerization of

(all-E)-lycopene to 1B- and other mon@-isomers was performed using the Gaussian

program by considering conformational changes ia tArminal moieties of the

molecule, each of which contained two methylenaugsoat C(3)/C(4) and C{[3C(4)

with lower rotational barriers. Calculations of tfiee energy for a series of polyenes

were antecedent to those of (B)Hycopene and th&-isomers: the energies of the

all-E-polyene GHn+2 were estimated in the order of the molecular fdangtarting

from buta-1,3-diene n( = 4) to

(3E,5E,7E,9E,11E,13F,15E,17E,19E)-docosa-1,3,5,7,9,11,13,15,17,19,21-undecaene (

= 22). The alkylated undecaenes of TMTU and HMHUrevéhen calculated as

described in the Materials and Methods section. estimation for the full-length

(all-E)-lycopene molecule was then carried out and fatidwy the mon@=isomers. In

addition to the individual conformational changédhee two methylene groups of the

terminal regions of the molecule, two conformatigpes were considered as the initial

conformer in the calculation of the free energyakE)-lycopene: namely, thgynlike

conformer of lycopene which has terminal groupshensame side of the central planar
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conjugated polyene (Figure 5A,B), and todi-like conformer which has the terminal

units on the opposite sides of each other (Fig@ehr The energy of theynlike

structure of (allE)-lycopene was calculated as a more stable confottma@ that of the

anti-like conformer, although this difference was tanadl to be significant (Table 3,

Figure 5A-D).
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Figure 5. Calculated minimum-energy conformation of (A—-DI)-@&)-lycopene and (E—

H) (152)-lycopene. The left figures (top views) show oalle from a different angle of

lycopene, corresponding to the conformation onriglet side (side views). C(3)/C(4)

and C(3/C(4) groups at the terminal regions of the moleculd,iB, E, and F are on

the same sidesynlike conformation) to the 11 conjugated double d®m the planar

configuration of lycopene, while those in C, D, &d H are on the opposite side

(anti-like conformation).
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Calculations with initial conformers estimated bg {CONFLEX method also supported

these results (data not shown). The energies of1thd-lycopene conformers in the

synlike andanti-like types were then evaluated by referring ta tifgall-E)-lycopene,

and those of &-, (92)-, and (1Z)-lycopene were estimated by the same method. The

results obtained showed that the energy oZ)dycopene was the highest among the

isomers and the order of stability was as follo(al-E)- ~ (52)- > (92)- > (132)- >

(152)-lycopene (Table 3). The order of the relativebsity of the isomers was

consistent with that of a previous study [7]. Fezergies were also calculated for the

constitutional isomers of lycopene, (&)j-5-carotene and (I5-f-carotene, using the

same procedure. These energies were estimated te6B88 and -51.5 kJ/mol,

respectively, with reference to the value of @gHlycopene in thesynlike form as zero,

which also suggested the relatively labile natufely@opene, as shown in the

experimental results [23,24].

Moreover, the activation energies of the isomeioratrom (all-E)-lycopene in the

syntlike form to eachZ-isomer were evaluated in the singlet state fronergn

differences between the ground state and TS etdctrenergies. The energy to

(132)-lycopene was experimentally determined to be 89/6ol in a benzene solvent

(Figure 6), and was calculated as 87.9 kJ/mol enptesent study (Table 3), implying
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that this theoretical approach is appropriate feal#ating energies. The values to

(152)-lycopene were then calculated as 90.4 kJ/mol @h@& kJ/mol at the twisted

angles of +94.7° and -95.0°, respectively (Table Rgure 7). The other

thermally-preferable isomers were estimated ushreg dame method, and activation

energies were determined in the order ofZj13X (152)- < (92)- < (52)-lycopene, for

which the geometry of the methylene units did nfiuence the values obtained (Table

3). This order was supported by previous findingjsas well as experimental data [1].

Consequently, (15-lycopene was the more preferred isomer on thés bafskinetic

parameters, but was unfavorable according to théymammic considerations: the back

reaction to the alk form could readily occur and give isomers othantthe 1Z form.

As discussed above, we only obtained 0.6 mg af)lfEopene with higher purity from

556 mg of (allE)-lycopene. However, this result was reasonablalmse the ratio of

(152)-lycopene to the ak: form was estimated to be 1:39, calculated accgrtbnthe

equation ofK = exp (AG/RT) (K, equilibria constantR, gas constant], absolute

temperature), and the difference between the cabdlvalue and the experimental

value would be caused by a lack of the calculatiocuracy (disregard of the solvent

effects or lack of the base function accuracy) on-reaching of the isomerization

reaction to a equilibrium state.
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(152)-Lycopene was thermally generated and purifieanfr@ natural source, and
mainly identified by an NMR technique for the fitghe as a natural origin. Moreover,
the occurrence and availability of thezZtsomer were also discussed on the basis of the
calculation method, which provided a rational erplion for the experimental results
obtained. Thus, a focus on the basic strategy,wiieicds to be avoided in these days of
fast technology and chemistry, will contribute taslkt and applied studies on

carotenoids through the benefit of highly developestrumental measurements.

Table 3. Calculated gibbs free energi@) of lycopene isomers and activation energy
(AEa) of rotational barriers for the isomerization pess of (allE)-lycopene to

(monoZ)-lycopene at th& state

lycopene AG? (kJ/mol) AEDL (@) (kJ/mol)

synlike anti-like
(all-E) 0.00 0.318
(52) 0.042 0.339 148.1 (+99.5°), 148.1 (-100.5°)
(92) 4.02 4.52 100.8 (+95.7°)
(132) 4.35 4.52 87.9 (+95.8°), 87.9 (-96.2°)
(152) 11.6 10.8 90.4 (+94.7°), 91.2 (-95.0°)

aThe energies (in kd/mol) are presented with refexda (allE)-lycopene in th& state.
Calculations were performed in tilsgn and anti-like conformation of the C(3)/C(4)
and C(3/C(4) groups at the terminal regions of the lycopendemde to the 11
conjugated double bonds in the planar configura(gee also Figure 5YCalculated
from thesynlike conformation of (alE)-lycopene (see Figure 5A,BPDihedral angle
(@) of C(n—-1)-Cn)-C(n+1)-Cn+2) for (hD-lycopene K = 5, 9, and 13) and C(14)-
C(15)-C(14-C(18) for (152)-lycopene. Clockwise and counter-clockwise rotaio

were examined.
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Figure 6. Arrhenius plots of thermal isomerization of (BMycopene to

(132)-lycopene in benzene. Experimental conditions vdescribed in detail previously
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Chapter 4

Effects of solvent and
temperature on E/Z
Isomerization of
(all-E)-Lycopene
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4.2. Introduction

The E/Z isomerization of carotenoids upon heating has losenonstrated for some

representative compounds, includifigcarotene, lutein, and zeaxanthin [1-4]. It has

been also reported that astaxanthin was isomebigdxbating in organic solvents, and a

higher rate of isomerization was achieved in alkglides such as CBl. and CHC}

[5,6]. However, there are few reports discussing #ffect of solvents on the/Z

isomerization of lycopene; consequently, the presevestigation was conducted to

characterize the isomerization of lycopene in w@siorganic solvents. Based on the

study of astaxanthin [5], we focused on the soheffécts of alkyl halides including

CH2Cl2, CHCE, carbon CCl, and CHBr2, as well as acetone, hexane, and benzene,

other commonly used solvents in the study of catks. Furthermore, the influence of

temperature o#-isomerization was investigated for each solvent.

Prior to the investigation of solvent effects omrdgene isomerization, Z9 and
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(132)-lycopene, predominantly formed during the heatimmgcess, were exhaustively
purified from heat-treated tomato paste and chearaed by UV-vis and NMR

spectroscopy, and their molar extinction coeffitsewere successfully determined for
the first time. These fundamental spectroscopia det¢ essential for the investigation of

the solvent effects on th&Z isomerization of lycopene.

4.3. Materials and methods
4.3.1. Chemicals

HPLC-grade acetone, hexane, benzene,Gti CHCk, CCL, and CHBr2 were
obtained from Kanto Chemical Co., Inc. (Tokyo, Jgp@IPEA was purchased from
Tokyo Chemical Industry Co., Ltd. (Tokyo). (&)-Lycopene was obtained by a
method described previoudl§] or was provided by Wako Pure Chemical Industrie

Ltd. (Osaka, Japan).

4.3.2. Isomerization of (allE)-lycopene
(all-E)-Lycopene was dissolved in the respective solvahts concentration of 0.1
mgmL, and the solutions were filtered through a @2-PTFE membrane filter

(Advantec Co., Ltd., Tokyo). A 5-mL sample was sfemred from each of the solutions
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to a 10-mL screw-capped tube. The headspace e fiith nitrogen gas, and the tube
was tightly capped to prevent oxygen entry throtlgh closure. The isomerization of
(all-E)-lycopene was conducted at 4 °C and 50 °C in #mi. dAfter the reaction, the
solvent was removed from the reaction tube by @gén gas stream, and the residue
was re-dissolved in hexane. Normal-phase HPLC vezsl o analyze the lycopene

isomers.

4.3.3. HPLC analysis

Normal-phase HPLC analysis was conducted accotditige method described by
Schierle et al. (19978] with some modifications. The sample was codte8 °C using
an autosampler with a cooler (L-2200, Hitachi Ltfiokyo) immediately before the
analysis. The detection wavelength of the compowad set at 460 nm (L-2455,
Hitachi Ltd.) where the differences in molar extion coefficients among lycopene
isomers are relatively smaller. The mobile phasesisted of hexane containing 0.1%
DIPEA and the stationary phase consisted of thnegeésil 300-5 columns connected
in tandem (3 x 250 mm in length, 4.6 mm inner di@meum particles, GL Sciences
Inc., Tokyo). The flow rate and column temperatwere set at 1 mimin and 30 °C,

respectively. Reversed-phase HPLC analysis wasnpeell according to the method of
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Takehara et al. (2014) [7].

4.3.4. Isolation and identification of (Z)- and (132)-lycopene

In older to characterization of the major lycopezeisomers, (9)- and
(132)-lycopene, generated by thermal isomerizationy tvere isolated by preparative
HPLC. (allE)-Lycopene was dissolved in benzene at a concentrat 0.7 mgmL, and
the solution was heated at 75 °C for 14.5 h indaek. After heating, the solvent was
evaporated on a rotary evaporator, and the resw® dissolved in hexane at a
concentration of 14.8 mg/mL. After filtering thrdug 0.2em PTFE membrane filter,
the solution was injected into the normal-phase ElRhstrument at room temperature
as described above, except for the mobile phasaifie¢DIPEA (400:1 v/v)) and flow
rate (2.0 mlmin). Under these conditions, fractions of crud&){§copene at a
retention time of 48.8-54.2 min and crude AtBcopene at 39.5-43.2 min were
isolated and applied to a second normal-phase @tographic separation using a
hexane/DIPEA mobile phase at 700:1 (v/v) for tlZeigbmer or 2000:1 (v/v) for the
13Z-isomer. Finally, the third normal-phase chromaapdpic separation was conducted

with hexane/DIPEA (500:1 v/v) to further purify @glycopene.
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4.3.5. UV-vis and NMR spectroscopic analyses of I&)-, (92)-, and
(132)-lycopene

UV-vis spectra of the purified lycopene isomers evareasured in hexane over a
scanning range of 200—600 nm, and thmaxima and minima of the compounds were
determined. Spectra were recorded with a Hitacl30We spectrophotometer (Tokyo).
The absorption at 460 nm was also measured to @jivaccurate estimation of the
concentration of lycopene isomers by comparing rtiear extinction coefficient of
(all-E)-lycopene to those of - and (1Z)-lycopene at that wavelength.

(92)-Lycopene and (1B-lycopene were identified by4 and*3C NMR spectroscopic
analysis. NMR spectra of the lycopene isomers wereorded using a JEOL
JMN-LA400 FT 400 NMR spectrometer (Tokyo) at 400 ¥Hor *H) and 100 MHz
(for 13C). Chemical shifts were recorded as #healue in ppm using tetramethylsilane

as an internal standard. Spectra were obtainedls & well as in CDGI

4.3.6. Evaluation of isomerization rate
In order to evaluate the effect of solvent specms isomerization of
(all-E)-lycopene, the reaction rate constants were catiedl Namely, assuming a

first-order reaction, the increment in the concatn of total Z-isomers with
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iIsomerization time was fitted to the equation (igwn below:

InC=-kt+1InCo (1)
where C and Co are the concentration and initial concentration(aif-E)-lycopene,
respectivelyk is the reaction rate constant, anid the reaction time. Only the linear
portion of the plot between the natural log of aamcation and time was considered.

Numerical values are presented as mean + SD.

4.4. Results and discussion
4.4.1. General profile of the thermal isomerizatiorof (all-E)-lycopene

The overall isomerization progress of (B)Hycopene was estimated as the total
amount ofZ-isomers in various organic solvents over 24 h, aag described as a
percentage represented by the ratio of the amdudtisomers to the total amount of
lycopene isomers including the (&)-form (Figure 1). The isomerization ratios at 4 °C
increased gradually in CBl2 and CHCY, reaching 19.7% and 11.4%, respectively,
over 24 h (Figure 1A). In CiBrz, the isomerization ratio of th&isomers exceeded
60% within the first hour, whereas ratio incremewtse hardly observed in acetone,
hexane, benzene, and GCht this temperature for the period of time tested.

Alternatively, at the relatively higher temperatwfe50 °C, the isomerization ratios of
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the Z-isomers increased in all of the organic solvemtsted (Figure 1B): CiCl2,
77.8%; CHBr2, 75.0%; CHC, 48.4%; acetone, hexane, benzene, and,3¢17-38.1.
Thus, promotedZ-isomerization of (alE)-lycopene has been first demonstrated in

CHzBrz as well as CECl2 and CHC4, whilst some experiments were carried out on
astaxanthin [5,6].

A B

100 -

Isomerization (%)

Time (h)

Figure 1. Changes in the content df){lycopene isomers thermally isomerized at (A)
4 °C and (B) 50 °C in various organic solven®s) &cetone; ¢) hexane; A) benzene;
(A) CHCl2; (m) CHCE; (o) CCly; (e) CH2Br2. Isomerization was expressed as a
percentage of the amount @isomers to the total amount of lycopene isomers
including (allE)-lycopene.

The thermally isomerized lycopene solutions obthiae50 °C over 24 h (Figure 1B)
were separated on a normal-phase HPLC column. yigieat chromatograms of these

samples are shown in Figure 2 as well as that dfigd (all-E)-lycopene (unheated).
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The predominankZ-isomer emerged in benzene astycopene (Figure 2B), while

many kinds of other geometrical isomers, includ{gg)-, (92)-, and (1Z)-lycopene

were observed in a GBIz solvent system (Figure 2C).
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Figure 2. Normal-phase HPLC chromatograms of (A) @Hycopene and thermally
generatedZ-isomers at 50 °C for 24 h in (B) benzene and (Gj=@.. Three
(monoZ)-lycopene designated in the charts were tentatiikntified according to the

literature [9-11], and ascertained yand'3C NMR spectroscopic analyses.
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This characteristic difference in the isomerizatigmofiles can lead to the selective
enrichment of a desirable isomer by taking advantz#ghe properties of the solvent, as
discussed below. The absorption maxima for eack kegain the chromatogram were
also measured using a photodiode-array detectoblgTa). Several peaks were
subsequently identified as certain geometrical exsnaccording to the visible spectral
data and retention times in HPLC described in ttezatures [9-11], as well as the
characterizations by NMR spectroscopy carried outthis study. The absorption
maxima of the dié-isomers, (4,132)- and (Z,132)-lycopene (peaksk and q,
respectively) showed a remarkable hypsochromict sk compared to that of
(all-E)-lycopene. On the other hand, those of th&-diemers including a peripheral
Z-configuration gave a relatively lower displacemestich as (B,92)- (peaks),
(5Z,92)- (peakw), and (Z,52)-lycopene (peak). The relative intensities of tiepeak
are also shown in Table 1 asDB#/Di, in which larger values were observed for4)t3
and (1Z)-lycopene isomers havingZaconfiguration around the center of the molecule

[9-11].

70



"P102JP 10N, € PUE T SI[qE, Y UT UMOYS dTe s1ow0sT auddodA[-(Z¢ )

pue -(Z6) pend A[YSTy Jo sIUAWUSISSE ‘WAY) SUOWE :SJUAWAINSLAW YIAN £q payynuap], “ouadodA] jo rowosi-Z paynuaprun, [11-6]
SyI0M SnOIAdXd 01 SUIPI0ddR PAFNUAPI A[9ANRIUSL,, "Y T I0J D, 0§ 18 I[DIHD Ul Sunesay SuLmp pajerouss srowost auadodA| 10y vAJId
9% 1°0 Sururejuod auexay Jo aseyd a[Iqow & Yirm D¢ "SI Ul WeIS0JBWOIYD ) WO PAUTLIQO I9M UOIBUSIISIP Yead SB [[om SB SOnJeA

dN 10S ‘OLY ‘v¥v (Z9) ol L8Y ‘LSY ‘€€ ‘19¢€ ZN I
aN 10S ‘OLY V¥ J(E-1I®) S'€T 88F ‘oSt ‘cev ‘19¢  (ZE1Z6) b
AN 10S ‘OLY ‘€v¥ AZ,S°ZS) £ ¢ v8Y ‘vSv ‘1€v ‘6S¢ ZN d
811 S6v Y9¥ ‘8€¥ “19¢ AZ6ZS) A 0'6L L6V ‘99% “ThY ‘09¢€ AZST) o
9°CI1 S6¥ ‘€9 ‘8€Y “19¢ AZ,S°Z6ZS) A Vs vev ‘€9 ‘LEY ‘19¢ J(zen)
4! L8Y ‘9SY “€€v ‘9S¢€ ZN n LIS TV “T9Y ‘8€v ‘09¢ ZN u
0¢l S6v Y9¥ ‘8€¥ “19¢ »(Z6) 1434 €6¥ TV ‘LEV ‘09¢€ ZN w
€8¢ G817 LSY “TEY “19¢€ ZN } L'Te L8V LSV “TeY ‘19¢ ¢ZN I
Vel S6v Y9¥ ‘8€¥ “19¢ AZ6°ZS) S ¥ 0¢ L8V LSY ‘€Y ‘09¢ AZ€1°Z6) |
(%) (w) JowosT (%) (wu) JowIosI
Yead Yead
Ig/aq xeuty, QuadooAT Ig/aq Xeuty ouadooAT

uwnjod drydersojeworyd aseyd-ewLiou e
Aq pajeredas s1owost auadodA] [eoawods 10y (/47 %) Yead-7Z oy JO SanNISudUI dATR[AI pue (X*Wy) pwrxew uondiosqy | dqel,

71



4.4.2. Purification and characterization of (Z)- and (13%)-lycopene

In order to obtain accurate estimations of the eatrations of (¥)- and
(132)-lycopene, these isomers were purified from somer mixture obtained by
heating in benzene at 75 °C. From a starting nateseight of 2,000 mg of
(all-E)-lycopene, 90 mg of the ZBisomer (reversed-phase HPLC, 98.8% purity;
normal-phase HPLC; 99.9%) and 18.4 mg of the Z-3somer (reversed-phase HPLC,
97.0%; normal-phase HPLG, 99.9%) were obtained. The relatively lower pusitaf
the compounds yielded by reversed-phase HPLC wasedaby the presence of
(all-E)-lycopene which would be attributed to the isorration to the alE-form during
the chromatographic procedure; the Blilsomer could be easily separated from these
Z-isomers by the aforementioned purification steps.

The structures of purified B- and (1Z)-lycopene were ascertained By and*C
NMR spectroscopic analyses (Figure 3), and thesgrasents are listed along with
those of the alk-form (Table 2, 3). NMR measurements were perfornmredwo
solvents, CDCGland GDs, in order to acquire characteristic NMR signal®lserved in
the previous analysis of (al)-lycopene [8]. The shift difference\d) against the
values of (allE)-lycopene were larger around tledouble-bond structures of the

lycopene isomers in the measurements of both nwaasidi both solvents. Principal
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assignments for the Z% and (1Z)-lycopene were in good agreement with those of the
values previously reported in CDClincluding synthetic ones [9], and more
sophisticated identifications were achieved for¢hapling constants in this work. The
spin signals attributed to ABB'-type systems were more distinctively observed in
CeDs for H-C(14), H-C(13, H-C(15), and H-C(Ip of (92)-lycopene, while simple
doublet of doublet (dd) patterns were obtainedtli@r protons of (13)-lycopene as a
result of the apparent loss of molecular symmetry.

The absorption maxima and molar extinction coedfitcs of (Z)- and
(132)-lycopene were determined in hexane to be 1.64>Mt.cmt at 465 nm and
137 x 16 M~t.cmt at 464 nm, respectively (Figure 4 and Table 4 Miapsochromic
shift accompanying the hypochromic effects of Zasomers has made it difficult for
researchers to estimate the concentrations of isoedelycopene in solution from
chromatographic measurements. The molar extinc@fficients of (2)-, (132)-, and
(all-E)-lycopene, predominant isomers formed during tkating process, were also
measured at 460 nm in the same solvent. Thesesvalatermined as 1.28 x°10.47 x
10° and 1.18 x 10Mt.cm?, respectively, could facilitate the compensatibisomer
concentrations in the chromatographic analyses,a@hdn the accurate estimation of

the isomerization profile of lycopene during therthal process. In addition, tEepeak
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ratios ofDe/Di were calculated from the values in Table 4 as%4d@ the Z-form and

56.2% for the 1&-form, which are compatible with the values presdrnn Table 1 and

other literature values [10,12].
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Figure 3.*H NMR spectra of the purified (A) B- and (B) (1Z)-lycopene. (400 MHz,

CDCh).
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(132)-lycopene in hexane.
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4.4.3. Thermal isomerization of lycopene and releva solvent effects

Isomerization of (alE)-lycopene to the individuaZ-isomers was investigated in
several organic solvents at 4 °C and 50 °C (Figb)e in which (2)- and
(132)-lycopene were estimated in a manner compensdtnghe different molar
extinction coefficients described above. In benzainé °C, (allE)-lycopene was hardly
isomerized to th&-forms (Figure 5A), and similar observations weradm in acetone,
hexane, and Ce&l(data not shown). In Gl and CHC} at 4 °C, the content of
(all-E)-lycopene gradually decreased with the concomigamérgence of th&-isomers
(Figure 5B,C). After 24 h incubation, the ratios (6E)- and (1Z)-lycopene reached
10.3% in CHCI2 and 8.8% in CHG]| respectively, as the predominant isomer. A rapid
decrease in the ali-content was observed in @Bf2, followed by an increment of
(52)-lycopene to 27.7% during the first several ho{iigure 5D). The degree of the
solvent effect on isomerization was thus demoredrgFigure 5B-D), and the rate
constants for isomerization @isomers were calculated as the first-order reactib
(all-E)-lycopene elimination as follows: (1.52 + 0.61)&° st in CH:Cl2; (8.0 + 0.5) x
10° st in CHCk, > 1.0 x 102 s?! in CHBr2. These results indicated that
(52)-lycopene was likely to be a predominant prodadhie solvents having a relatively

strong solvent effect (Figure 5B,D), while the Z)-3somer was prominent in solvents
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with a weak effect (Figure 5C).
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Figure 5. Thermal isomerization of (al)-lycopene to individuaZ-isomers (A to D) at
4 °C and (E to H) at 50 °C in (A, E) benzene, (BCOHCl2, (C, G) CHC} and (D, H)
CH2Br2. Changes in the isomer content are presentedregird to the total amount of
lycopene isomers resulting at each point of sargpli@) (all-E)-lycopene; ¢)

(132)-lycopene; &) (92)-lycopene; {\) (52)-lycopene; &) total amount of the other
Z-isomers.

At the relatively higher temperature of 50 °C (FmWbE-H), the isomerization
ratios of theZ-isomers were accelerated in the all the organigests above in

comparison with those at 4 °C. The rate constamtssbmerization to th&-isomers at
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50 °C were calculated to be (3.4 + 0.4) 19! in benzene, (1.41 + 0.28) x *&tin
CHzCl2, (8.7 + 0.3) x 1% s?! in CHChk, and > 1.0 x 10 s?! in CH:Br2. The rate
constants in the other solvents examined were appately equal to that of benzene:
(3.3 £0.8) x 10° st in acetone; (3.7 = 0.3) x 10s ! in hexane; (3.3 £ 0.1) x 10s?

in CClL (data not shown). Similar tendencies were als@ioétl at this temperature,
namely, the rate constants for isomerization wairgelr in solvents with a strong solvent
effect, generating &-lycopene as a predominant isomer; in contragZ)(lycopene
was predominant in solvents with a weaker effette Tsomerization profiles to the
individual isomers in acetone, hexane, and«@@re also in good accordance with that
of benzene. In C{Cl> and CHCY, (137)-lycopene emerged as the predominant isomer
and gradually decreased after reaching its maximiuca. 20% after the initial 2-3 h, at
which time the otheEZ-isomers started to increase. These observations eescribed

in previous studies [8,13]. According to [14], tipetential energies oall-E- and
monoZ-isomers are in the order of @&)- > (52)- > (92)- > (13X)-lycopene, and the
magnitude of the activation energies of the isomaion from (aHE)-lycopene to
(mono-Z)-lycopene are 8- > (92)- > (13Z)-lycopene. These computational results are
well accounted for in our experimental findings. nNdy, (1%&)-lycopene was

kinetically favored, while the Bisomer was thermodynamically preferred. In2CH
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and CHBr2, a strong solvent effect should lower the isonaimn activation energies
to the Z-isomer. Once the thermodynamically stalliésomer of lycopene was
produced, (di#)- and (triZ)-lycopene isomers having-configuration at C(13 or 18
and C(9 or 9 could easily be generated because of the lowrasion energies of
subsequent isomerization reactions.

The mechanism of the conversion of @Hycopene toZ-isomersas depicted
below, could be explained in a similar manner tattlof Z-isomerization of

(all-E)-p-carotene by Fe-MCM-41 or titanium tetrachlorid&418]:

(Lycopeneg — e = (Lycopené&)e (2)
(Lycopené&’)e = (Lycopené’)z 3)
(Lycopené&’)z + € = (Lycopene) (4)

The carbon atom of an alkyl halide is partially ifee because of the difference in
electronegativity between the carbon and halogemst leaving the carbon atom
susceptible to attack by a chemical species wigh kiectron density. According to the
Lewis definition, CHBrz2, CHCk, and CHCI: are defined as acids because they are
electron acceptors, while lycopene is a base owvtingts electron-rich conjugated
double-bond structure. Therefore, it is quite fkéhat the carbon atoms of the alkyl

halides are associated with the double-bond maiefi¢all-E)-lycopene.
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When (allE)-lycopene was dissolved in these alkyl halidesgmisrization

progressed in the following order: @Bt2 > CHCl2 > CHCk. The differences in the

strengths of the solvent effect among these sadveah be explained by the hard and

soft acids and bases (HSAB) theory [19-21]. Acargdio the HSAB theory, a soft

Lewis acid/soft Lewis base pair or a hard Lewidédwrd Lewis base pair will react

easily because of the formation of strong bonds 3$tiength of the charge on the

carbon atoms can be arranged in ascending ordeHGf;, CH.Cl> and CHBr2 on the

basis of electronegativity, and the softness ofaitid is indicated by the reversed order.

Lycopene can be classified as a soft base becahss & large polarizability owing to

the eleven conjugated double bonds in its structisamerization occurred in these

solvents in that order preferentially. On the othand, the apparently contradictory

result at 4 °C in CGl(Figure 1A) makes the effect worthy of furtherdstu

So far, CHCd and CHCI2 have been commonly used in various applicatiortk wi

lycopene, such as an extraction solvent [22,23hilag@hase in HPLC analysis [24,25],

and as an entrainer in supercritical extractior].[R6vould be more appropriate to pay

attention to lycopene processing with these sotyaenstead of estimating the apparent

guantity of thez-isomers.
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Chapter 5

Photosensitized E/Z
Isomerization of
(all-E)-lycopene aiming at
practical applications
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To isomerize (alE)-carotenoids taZ-isomers, heat treatment has been the typical

method used so far[1-4]. There are some reports on the photosengditEZ&

isomerization of carotenoids, an alternative mettmdhermal processing, which has

been confined to (alk)-p-carotene [5,6]. However, it is not clear that thaction also

occurs about lycopene. Here, we report on the ifirstiance of photoisomerization of

(all-E)-lycopene using various photosensitizers, inclgdiedible ones, aiming at

practical applications.
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5.3. Materials and methods
5.3.1. Chemicals
Analytical grade acetone, ethyl acetate and MTBErewebtained from

Nakaraitesuku Co., Ltd. (Kyoto, Japan), and HPL&dgr methanol was obtained
Sigma-Aldrich Co. (St. Louis, MO, USA). Hexane wabtained from a solvent
dispensing system supplied by Glass Contour (Nikkemsen & Co., Ltd., Osaka,
Japan) under a nitrogen atmosphere. MB (Figure WA3 purchased from Nacalai
Tesque, Inc. (Kyoto, Japan), and chloroptgllerythrosine, and RB (Figure 1B-D)

were purchased from Wako Pure Chemical Industrigls,(Osaka).

Figure 1. Chemical structures of the photosensitizers usdtis study: (A) methylene

blue; (B) chlorophyll; (C) erythrosine; (D) rose bengal.
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5.3.2. Preparation of (allE)-lycopene
(all-E)-Lycopene was obtained from tomato paste (Kagome IGd., Tokyo, Japan;
lycopene content, 8-12 g/kg) as described in ptevieports [3,4]: 360 mg of fine red

crystalline powder from 70.4 g of tomato materi@yersed-phase HPLG, 99.1%

purity.

5.3.3. Photosensitized isomerization of (alt)-lycopene

To the (allE)-lycopene solution in acetone (2 x~10nol/L), MB, chlorophylla,
erythrosine or RB were added at the same molay eatilycopene. After nitrogen gas
was bubbled through the solutions, samples weradiated by xenon lamp
(XB-50101AA, Ushio Inc., Tokyo) equipped with omlcfilters corresponding to the
absorption wavelength of the individual sensitiz&i® and chlorophylla, irradiation
range> 600 nm (LV0610 optical filter, Asahi Spectra Aad., Tokyo); erythrosine and
RB, 480 to 600 nm (GIF filter, Nikon CorporationpKyo). The photosensitization
reaction was conducted at 32 °C for 60 min in &M mm glass container with a lid.
The reaction mixtures were sampled and the contehty/copene isomers were
analyzed by reversed-phase HPLC based on the peak a

The time-dependent photoisomerization behavior ¢etane, ethyl acetate, and
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hexane was also investigated under the same comslitis described above using
erythrosine and RB, both of which are legitimatapke and sufficiently inexpensive to

be applicable for practical use.

5.3.4. HPLC analysis

Z-Isomers of lycopene were separated withsadarotenoid column (250 x 4.6 mm
inner diameter, wm particles, YMC, Kyoto) using two mobile phasessisting of (A)
methanol/ MTBE/HO (75:15:10, v/v/v) and (B) methanol/MTBEM (7:90:3, v/v/v).
The gradient profile was as follows: 0-3 min, 0-2B%inear; 3—15 min, 27-55% B;
15-25 min, 55-65% B; 25-35 min, 65-85% B; 35-40, 1&5+95% B; 40—48min, 95—
100% B. Flow rate was 1.0 mL/min and column temppeeawas maintained at 25 °C.
The quantification oZ-isomers of lycopene was performed by peak aregtation at
470 nm using a UV-vis detector (JASCO Co., Toky¢)32)-, (92)-, (all-E)-, and
(52)-lycopene were identified by peaks with the retantimes of 33.8, 37.9, 42.4, and

42.9 min, respectively, with this system.

5.4. Results and discussion

5.4.1. Photoisomerization with various sensitizers
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The photoisomerization of (al)-lycopene to the correspondingforms was
performed in acetone in the presence of four kiofdsensitizers using filtered light.
After irradiation with 480-600-nm light for 60 minthe concentrations of
undecomposed lycopene remaining in solution weterahéned to be 1.5 x I®mol/L
(with MB), 1.7 x 10° mol/L (chlorophylla), and 1.7 x 10 mol/L (without sensitizer)
under> 600-nm light irradiation; 0.7 x I®mol/L (erythrosine), 1.0 x I@mol/L (RB),
and 1.9 x 1@ mol/L (without sensitizer) by the HPLC analysigpital chromatograms
shown in Figure 2. The total amountsifsomers relative to the remaining lycopene
after the reaction were 57.4%, 51.3%, 47.7%, and%6with MB, chlorophylla,
erythrosine, and RB, respectively (Table 1). Ondtier hand, the blank tests irradiated
at the light regions more than 600 nm and betwe&$hahd 600 nm without sensitizer
resulted in a-isomer content of only 7.4% and 7.7%, respectivétythe best of our
knowledge, photoisomerization of (&)-lycopene was previously conducted by Stahl
and co-workers [7], and Lee and Chen [8]. Howev&tahl and co-workers [7]
performed the iodine-catalyzed isomerization; theéirie is inedible, and the reaction
mechanism would contain a radical process prinlgig@l]. Then, Lee and Chen [8]
carried out the isomerization of (&)-lycopene by direct light irradiation for 60 min,

obtained a few percent @isomers. Our results obviously indicated that ukage of

93



sensitizer and filtered light resulted in an acedkd isomerization of (al)-lycopene

to Z-isomers. MB was the most efficient sensitizer floe isomerization among the

reagents tested; however, it is not approved fer insfood processing. In contrast,

chlorophyll a, erythrosine, and RB are usable in such industiédds, and therefore

erythrosine appears to be the most suitable sessfor (allE)-lycopene isomerization.

As for the individualZ-isomers generated, severdlisomers of lycopene were

observed in the HPLC chart in addition t&)5 (92)-, and (1Z)-lycopene (Figure 2B)

predominantly contained in processed food [1,1@). all cases with the above

sensitizers after 60-min irradiation, Z)slycopene showed the greatest increase to

39.9%, 31.7%, 37.7%, and 29.9% relative to the neimg lycopene with MB,

chlorophyll a, erythrosine, and RB, respectively (Table 1). Ga tther hand, &-,

(132)-, and otheiZ-isomers increased to less than 10% with each tesarsunder the

same irradiation duration. L»Lycopene exhibits higher bioavailability [10] and

antioxidant activity [11] compared to (dH-lycopene and possibly to {8 and

(132)-lycopene. In addition, &-lycopene is estimated to be thermodynamicallyemor

stable than @)- and (1Z)-lycopene according to the results of quantum dsieyn

calculations [12]. Therefore, we believe that pBettsitized isomerization is an

effective method to produce lycopene isomers widphssticated functionalities and
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greater storage stability among tésomers.

A (all-E)

B (all-£)

(52)

Absorbance at 470 nm (a. u.)

15 25
Time (min)

Figure 2. Reversed-phase HPLC charts of (A) @lHycopene and photoirradiated
lycopene with rose bengal (RB) as a sensitizelir{Blcetone and (C) in hexane at 32 °C
for 60 min. Unidentified peaks contain muld}isomers as well as other

mono-E)-isomer(s).
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5.4.2. Time course of the photosensitized isomertzan of lycopene and solvent
effects on the content oZ-isomers

In order to determine the optimum condition for fsensitized isomerization of
(all-E)-lycopene, the sensitizers erythrosine and RBamat for use in food processing
and have good isomerization efficiency, as mentoabove, were used. The time
course examinations of photosensitized isomerigaifdycopene were carried out with
the sensitizers in acetone (Figures 3A,B). Thel tataount ofZ-isomers of lycopene
with erythrosine was slightly greater than with RiB\d (%)-lycopene constituted the
majority of Z-isomers with both sensitizers. Using erythrosi(@7)-lycopene, a
kinetically-preferable isomer, initially emergeddalikely reversed to the (al)-form
with time.

Next, solvent effects on isomerization with the tsemsitizers was investigated using
ethyl acetate (Figures 3C,D) and hexane (FigureB)3Both of which are approved for
use in the food, drink and dietary supplement mactufing industries. After irradiation
in ethyl acetate for 60 min, the concentrationgyobpene remaining in solutions were
0.6 x 10° mol/L with both erythrosine and RB; on the othand, relatively higher
levels of lycopene were obtained in hexane: 1.0 mol/L with erythrosine and 1.4 x

107° mol/L with RB. The total amounts @isomers relative to the remaining lycopene
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after 60-min irradiation were 80.4%, 67.6%, and724.in hexane, ethyl acetate, and

acetone, respectively (Figures 3E,C,A), and a amténdency was also observed with

RB (Figures 3F,D,B). As for the individuat-isomers, (%)-lycopene was again

predominantly produced in each condition and b8#)-{ycopene and (13-lycopene

exceeded 10% by content after 60-min irradiatiothweirythrosine (Figure 3E) or RB

(Figures 2C, 3F) in hexane. In addition, the tatalount of otheZ-isomers except for

(52)-, (92)- and (1Z)-lycopene was also markedly increased in hexafe/%4 and

19.4% with erythrosine and RB, respectively. Thessalts demonstrate that the usage

of a less polar solvent not only accelerafeidomerization but also was effective in

suppressing the decomposition of lycopene. To @xpthe higher rate of the

photosensitized isomerization of (&)-lycopene to theZ-isomers, it could be

reasonable to investigate the energy gap betweephbtosensitizer in an excited triplet

state and the (al®-lycopene in a triplet state [5,6,13].
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Figure 3. Photoisomerization of (al)-lycopene to individualZ-isomers in (A, B)
acetone, (C, D) ethyl acetate, and (E, F) hexatte (&, C, E) erythrosine and (B, D, F)
RB as a sensitizer under 480-600 nm light irragiatChanges in the isomer content
are presented relative to the total amount of lgo@pisomers at each sampling point:
(o) (all-E)-lycopene; (®) (52)-lycopene; {\) (92)-lycopene; (A) (132)-lycopene; (O)

otherZ-isomers including those unidentified; (m) total amount of Z-isomers.

In conclusion, the photoisomerization of (B)Hycopene to Z-isomers with

sensitizer and filtered light has proven to be neffective than thermal isomerization.
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In particular, the reaction condition with erythresin hexane under 60-min irradiation
at wavelengths between 480 nm and 600 nm was steniethod to enrich the content
of Z-isomers and suppress the decomposition of lycopdirese findings will
contribute to the development of facile isomermatf (all-E)-lycopene taZ-isomers in

the fields of food, drink and dietary supplemennmofacturing.
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Chapter 6

Enhanced E/Z
Isomerization of
(all-E)-lycopene by
employing iron(l11) chloride
as a catalyst
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6.2. Introduction

There have been some reports on Ei& isomerization of carotenoids, except for
lycopene, using a catalyst such as iron(lll) clderi1,2], Fe-MCM-41 [3,4], and
titanium tetrachloride [5], but no observations nfrothe perspective of both
isomerization efficiency and recovery of the camoids have been published. In
connection with our studies &Z isomerizationye report here on the first instance of
catalytic E/Z isomerization of (alE)-lycopene using iron(lll) chloride applicable to
industrial manufacturing in the fields of food, mkiand dietary supplements. In this
study, to understand tit&Z isomerization characteristics of lycopene usirgdhtalyst,
the effects of reaction solvent, concentration ain{lll) chloride, and reaction
temperature were investigated, and the reactiomiton was optimized.This new

procedure will be an effective tool f&fZ isomerization of lycopene and will contribute
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to the understanding of the catalytic isomerizapoocess regarding lycopene.

6.3. Materials and methods

6.3.1. Chemicals

(all-E)-Lycopene was purified as previously described][6y obtained from Wako
Pure Chemical Industries, Ltd. (Osaka, Japan).(liprchloride was purchased from
Wako Pure Chemical Industries, Ltd. HPLC-grade hexaacetone, ethyl acetate,
benzene and Ci€l. were obtained from Kanto Chemical Co., Inc. (Takyapan).

DIPEA was purchased from Tokyo Chemical Industry, Ctd. (Tokyo).

6.3.2.E/Z Isomerization of (all-E)-lycopene using iron(lll) chloride

(all-E)-Lycopene was dissolved in acetone, ethyl acetstazene, or CiLI2 at a
concentration of 0.1 mg/mL, and a suitable amouintam(lll) chloride was added to
the solution. From each of the solutions, 5 mLahple was immediately transferred to
a 10-mL screw-capped tube, the headspace was pwigeditrogen gas, and the tube
was tightly capped to prevent oxygen from coming icontact with the solution. The
isomerization reaction was conducted at a spect@etperature for up to 24 h under

darknessThe reaction mixtures at a given time during tramsrization were filtered
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through a 0.2dm polytetrafluoroethylene membrane filter (Advan@e., Ltd., Tokyo)

before the HPLC separation.

6.3.3. HPLC analysis

Normal-phase HPLC analysis with a photodiode adetgctor (L-2455; Hitachi Ltd.,

Tokyo) was conducted according to the method desdrpreviously [7]. Briefly, the

analysis was performed on three Nucleosil 300-6raok connected in tandem (3 x 250

mm in length, 4.6 mm inner diameteru® particle size; GL Sciences Inc., Tokyo) with

hexane containing 0.1% DIPEA, at a flow rate of hl/min, and a column

temperature at 30 °C. The quantification of lycapésomers was performed by peak

area integration at 460 nm.

6.3.4. Evaluation of the decomposition rate

The decomposition of lycopene associated with igs@agon reaction was evaluated.

Assuming that the decomposition of lycopene is exiprated by first order kinetics,

the decomposition rate constak) €an be calculated according to the equation: In

(CICo) = —kt, whereC andCo are the concentration and initial concentratiofyobpene

isomers, respectively, andis the reaction time. Only the linear portion o€ thlot
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between the natural log of concentration and tiras wonsidered. Numerical values are

presented as mean * SD.

6.4. Results and discussion
6.4.1. Profile of isomerization of (alle)-lycopene toZ-isomers in the presence of
[ron(lll) chloride

The normal-phase HPLC charts of (B)Hycopene (purity>99.0%) and generated
Z-isomers of lycopene by the reaction with iron(ithloride are shown in Figure 1.
(132)-Lycopene predominantly emerged asZ-ssomer at 20 °C for one hour with
iron(I11) chloride at a concentration of 5.0 x"tthg/mL in acetone (Figure 1B), while a
number ofZ-isomers including &)-, (92)-, and (1Z)-lycopene were observed with a
relatively high level of the catalyst (1.6 x Z@ng/mL) (Figure 1C). Each peak{)
designated in the chromatogram was also charaetkrising a photodiode-array
detector. Severa-isomers of lycopene were identified accordingh® tetention times
in HPLC, visible spectral data, and the relativeemsities of theZz-peak as %Ds/Dii
described in previous researches (Table 1) [7—h8]dbsorption spectra of the isomers
having a 13-configuration around the center of the moleculghsas (2,132)- and

(92,132)-lycopene (peaks and h, respectively) as well as (ZBlycopene, showed

108



significant blueshifts, and the values ofD&/Di increased considerably compared with

that of (allE)-lycopene. However, those of the isomers contginan peripheral

Z-configuration, such as ZP'Z)- and (%,52)-lycopene (peaks andl) as well as

(52)-lycopene, were relatively lower.

A (all-E)

Absorbance at 460 nm (a.u.)

12 15 18 21 24 27 30

Figure 1. Normal-phase high-performance liquid chromatogm@mmalysis of (A)
(all-E)-lycopene and catalytically generat@dsomers using iron(lll) chloride at a
concentration of (B) 5.0 x 1Omg/mL or (C) 1.6 x 1& mg/mL at 20 °C for one hour in
acetone. The lycopene was prepared at an initiatertration of 0.1 mg/mL. B-,
(92)-, and (1Z)-lycopene designated in the charts were identihedording to the
previous studies [7—-13]. Some of the peakd)(were tentatively identified as shown in
Table 1.
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6.4.2. Effect of solvent on isomerization of (alk)-lycopene with iron(lll) chloride
Isomerization of (alE)-lycopene (0.1 mg/mL) t@-isomers was investigated in the
presence of iron(lll) chloride (1.0 x Tomg/mL) at 20 °C in several solvents, including
ones permitted for use in food and beverage pramucthe total contents @-isomers
converted were estimated to range between 50-80%n wiine remaining lycopene
without decomposition was taken as 100% (Tablea®d showed an increase in
efficiency in the following order: CiCl2 > benzene > acetone > ethyl acetate.
Relatively higher isomerization contents in £l and benzene might be caused by
differences in the solvation states, because tlserpthon maxima of lycopene were
characteristically red-shifted in these solventngared with acetone and ethyl acetate
[6]. Some studies have also reproducibly reported Z-isomerization of carotenoids
including lycopene were promoted in halogenatedesus, such as G&lz, CHCk and

dibromomethane [7,14,15].
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In terms of eachZ-isomer generated, it was demonstrated that theaewpbrof
(52)-lycopene increased temporally in each solventeteswhereas (13-lycopene
maintained constant values or decreased (Tabkc2prding to computational methods,
the magnitudes of the activation energy of isonagion from (allE)-lycopene to each
(monoZ)-isomer were estimated in the following ordeZ)5> (92)- > (13)-lycopene,
and the relative potential energy(ofionoZ)-lycopene on the basis of (&)-lycopene
was in the order: (13- > (92)- > (82)- = (all-E)-lycopene [16,17]. Taking into account
the increase in othef-isomers of lycopene, kinetically-favored @dycopene was
produced immediately after the reaction and walevia@d by the reversed reaction to
(all-E)-lycopene and subsequent isomerization to thermeaaycally-stable
(52)-lycopene or (multig)-lycopene containing theZsconfiguration [16,17]. Such
tendencies for the isomerization were also obseimethe thermal isomerization of
(all-E)-lycopene [6,7]. In benzene, 4Blycopene markedly increased compared with
the other solvents tested, while, in £Hp, (52)-lycopene and the othetisomers of
lycopene markedly increased. This characteristiferéince in the isomerization
preference would lead to the selective enrichmentam isomer with desirable
Z-configuration by taking advantage of the solvawiperties.

The remaining ratios of total amount of lycopenemsrs without decomposition
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after the 12-h reaction were higher in the ordeacd#tone > benzene > ethyl acetate >
CHzCl2 (Table 2). Lycopene was hardly decomposed in aeetand benzene: the
remaining ratios of lycopene after the 12-h reactieere both more than 90%. On the
other hand, in CEClz, the remaining lycopene after 3 h and 12 h wag @814% and
47.5%, respectively. It has been reported thakasthin, a kind of carotenoid, was also
decomposed in Ci€l2 [14]. Together with the availability of acetonedagthyl acetate

in food processing in many countries, the two sulivere considered to be suitable for
use in the isomerization of (aH)}-lycopene for the food, beverage, and dietary
supplement manufacturing industries. In comparisidh ethyl acetate, acetone is able
to isomerize (alE)-lycopene toZ-isomers more efficiently and largely without
lycopene decomposition. To optimize the isomeraratieaction for compatibility with
food processing, experiments were performed usiogtoae as a solvent in the

following sections.

6.4.3. Dependence of iron(lll) chloride concentrabn on isomerization of
(all-E)-lycopene
The isomerization of (ak)-lycopene (0.1 mg/mL) was investigated using iHdn(

chloride at concentrations ranging from 5.0 X410 1.6 x 10> mg/mL (Figure 2). The
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more catalyst was added to the reaction solutlengteater the production #fisomers

of lycopene. The total contents&isomers reached about 40% within one hour with an
iron(I11) chloride concentration of 5.0 x 1mg/mL, and were maintained at a constant
level for 24 h (Figure 2A). On the other hand, wathatalyst concentration of 1.0 x40
mg/mL, the total content d-isomers was progressively increased after aralrtirst

of conversion and reached about 60% for 24 h (EigkB). Moreover, at higher
concentrations of no less than 2.0 x3Mg/mL, more than 80% isomerization was
attained for a 24-h period at longest (Figure 2C-4&$ for individual isomers,
(132)-lycopene mainly increased with iron(lll) chlori@é concentrations of 5.0 x 10
and 1.0 x 18 mg/mL. In the case of catalyst at a concentratibno less than 2.0 x
1073, (52)- and the otheZ-isomers emerged as the predominant isomers. Haweve
while (132)-lycopene initially increased during 1-2 h of réac with iron(lll) chloride

at all concentrations tested, it gradually decréasmcomitant with the increase in the
other Z-isomers. The computational approach discussed ealsmcounts for this
isomerization profile. Namely, (E3-lycopene which has a low activation energy was
remarkably increased at a relatively lower conamn of iron(lll) chloride, and
(52)-lycopene which has a higher activation energyldarer potential energy increased

remarkably at a relatively higher catalyst concaign. In addition, once the
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thermodynamically stable ZHisomer of lycopene has been formed, - and
(tri-Z2)-lycopene isomers can be easily generated becaligbe lower activation
energies of the subsequent isomerization reactions.

Since all of the lycopene was degraded in the preseof iron(lll) chloride at
concentrations of 8.0 x 1and 1.6 x 1¥ mg/mL, their time courses were limited to
12 h (Figure 2E) and 3 h (Figure 2F), respectivAly.is often seen in the general
catalytic reaction, the higher the concentrationiroh(lll) chloride, the faster the
decomposition of lycopene. The decomposition ratestants were (1.9 + 0.2) x $0
s1(1.8+0.6) x 1s?, (1.8+0.5) x 1P s, (9.2+2.6) x 1P s, (3.1 +0.6) x 10
s and (1.2 £ 0.5) x 10 s with iron(lll) chloride concentrations of 5.0 x 01.0 x
1073 2.0 x 108 4.0 x 108 8.0 x 103 and 1.6 x 1 mg/mL, respectively. Up to an
iron(lll) chloride concentration of 2.0 x TOmg/mL (the molar ratio of lycopene to
iron(Ill) chloride is 1:0.066), lycopengashardly decomposed during the reaction: the
total amount of the remaining lycopene was 90.3% ®i0 x10° mg/mL catalyst for
0.1 mg/mL of (allE)-lycopene in acetone for 24 h at 20 °C. Thereftwegxploit this
isomerization procedure for practical applicatiahss preferable that the molar ratio of
lycopene to iron(lll) chloride is 1:0.1 or less, ialin can suppress the decomposition of

lycopene and increase the contenZ-asomers efficiently.
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Figure 2. Isomerization of (alE)-lycopene toZ-isomers using iron(lll) chloride at
concentrations of (A) 5.0 x 1dmg/mL, (B) 1.0 x 16® mg/mL, (C) 2.0 x 1¢ mg/mL,
(D) 4.0 x 10° mg/mL, (E) 8.0 x 1¢ mg/mL, and (F) 1.6 x I8 mg/mL at 20 °C in
acetone. The lycopene was prepared at an initradedration of 0.1 mg/mL. Changes
in the isomer content (%) are presented relatiibéaotal amount of lycopene isomers
at each sampling point:o) (all-E)-lycopene; (®) total content of Z-isomers; {\)
(52)-lycopene; (A) (92)-lycopene; (o) (13Z)-lycopene; (m) sum of Z-isomers of
lycopene other than -, (92)-, and (1Z)-forms. Because of the higher decomposition
levels of the lycopene (panels E and F), analysese vimited to shorter reaction
durations (see also in the text).

6.4.4. Effect of reaction temperature on isomeriz&n of (all-E)-lycopene with
iron(lll) chloride and a possible isomerization pracess

Using the above catalyst concentration of 1.0 %2 Ifig/mL, the isomerization
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temperature of (alk)-lycopene in acetone was optimized in the range-@0 °C. As

the reaction temperature was raised, the totakoowfZ-isomers of lycopene markedly

increased (Table 3). Especially, the isomer cord@proached 80% within a few hours

after heating at 60 °C. In addition, at a reactiemperature o060 °C, the other

Z-isomers of lycopene increased considerably becatiige possible enhancement of

(di-Z)- and (triZ2)-lycopene containing &-configuration, as discussed above. Focusing

on the reaction times of 3 h and 12 h7)(§/copene and othez-isomers of lycopene

increased in a time-dependent manner in each wéwzeas (138)-lycopene decreased.

(92)-Lycopene also increased temporally in the rarfg@-d0 °C while it decreased at

the elevated temperature of 60 °C. Furthermore,ttted amount of lycopene was

hardly decreased during the reaction period: theaneing lycopene exceeded 90% of

the initial dose in each measurement after 12 WI€T&). Thus, a higher level of

isomerization was successfully achieved at 60 °@ewduppressing the decomposition

of lycopene to a minimum, and is thus appropriatepfactical applications.
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We propose that the mechanism B/Z isomerization of lycopene using iron(lll)

chloride could follow a similar process to that (@fl-E)-f-carotene using iron(lll)

chloride [1,2], Fe-MCM-41 [3,4], or titanium tetfdoride [5] as described below:

(Lycopene} + Fe* = (Lycopené&)e + F&* (1)
(Lycopené’)e + FE€* = (Lycopené®)e + F&* (2)
(Lycopené&)e = (Lycopené’)z (3)
(Lycopené®)e = (Lycopené)z (4)
(Lycopené)z + F&*= (Lycopené)z + Fe* (5)
(Lycopené’)z + F&¢* = (Lycopene) + Fe'* (6)

First iron(lll) ions in the catalyst accept an ¢&ten from (allE)-lycopene, (Lycopene)
and also from the resulting cations (Lycop&geshown in equilibriums (1) and (2). The
cation species (Lycopeti} and (Lycopen€)s, which are able to rotate at the
electron-deficient site formerly double-bondednisoize to the correspondiagforms,
(Lycopené’)z and (Lycopen®)z in equilibriums (3) and (4), respectively. Finaltiie
Z-isomerized lycopene cation species accept thdrefedrom iron(ll) ions to form
Z-isomers of lycopene in equilibriums (5) and (6).

In this study, we found that (all}-lycopene isomerizes tB-isomers efficiently and

largely without decomposition by employing an agpiate solvent and concentration
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of iron(Ill) chloride as catalyst under optimizeshtperature: the isomerization ratio of
(all-E)-lycopene (0.1 mg/mL) t&-isomers and the total amounts of the remaining
lycopene were attained at 79.9% and 96.5%, resgdgtiwith 1.0 x 10° mg/mL
iron(lll) chloride in acetone for 3 h at 60 °C. $tagatalytic procedure is not only more
effective in obtainingZ-isomers of lycopene exhibiting good functionastiéut is also
applicable to industrial manufacturing in the feldf food, drink and dietary

supplements requiring less facility investment.
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Chapter 7

Vegetable oil-mediated
thermal 1somerization of
(all-E)-lycopene: facile and
efficient production of
Z-1S0Mers



7.1. Table of contents
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7.2. Introduction

As discussed in the previous chapter, we demossitiadsic studies on the thermal-
[1] and photo-isomerization [2] of (al}-lycopene, and finally attained a greater
isomerization to the correspondiggisomers (79.9% conversion) in the presence of a
catalyst [3] almost without decomposition of lycapg96.5% recovery). Although our
developed methods showed high efficiency for gedo@t isomerization of
(all-E)-lycopene and are amenable to foods and beveragesfacturing, some organic
solvents or food additives such as erythrosineison{lIl) chloride were employed in
each procedure. Since the global trend is towatdralaand additive-free foods and

drinks, we embarked on a new study on lycopenegpatipns rich inZ-forms without
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those chemical reagents. Several studies havegieoted that some organic solvents,

such as CECl2 and CHC4, promoted thermat-isomerization of carotenoids including

lycopene [4-6], and have stimulated interest inpgbgsible effects induced by biogenic

solvents like vegetable oils. Here, we investigatedpotential of eleven different kinds

of edible vegetable oils available in the marketisgomerize (alE)-lycopene to

Z-isomers under heat treatment. This simple buce{e method will be an alternative

tool for the Z-isomerization of (alE)-lycopene under conditions suitable for food

processing.

7.3. Materials and methods

7.3.1. Chemicals

All solvents were of analytical-grade, except fdret HPLC-grade methanol

(Sigma-Aldrich Co., St. Louis, MO) and vegetablés dor cooking (perilla, linseed,

grape seed, soybean, corn, sesame, rapeseed,raice safflower seed, olive, and

sunflower seed oils). The suppliers of the oilseveummarized in Table 1 with some

chemical properties [7—10].
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7.3.2. Purification of (all-E)-lycopene

(all-E)-Lycopene was obtained from tomato oleoresin (Oyb4atd® 15%, LycoRed
Ltd., Beer-Sheva, Israel) according to the previdescription [1]: 493.4 mg of fine red
crystalline powder from 3.12 g of tomato materi@yersed-phase HPLG, 98.3%

purity. Purified lycopene was stored at —80 °Clyjust before use.

7.3.3. Thermal isomerization of purified (all-E)-lycopenein vegetable oils

The edible vegetable oils used in this study werdlp, linseed, grape seed, soybean,
corn, sesame, rapeseed, rice bran, safflower sbeel, and sunflower seed oil. Purified
(all-E)-lycopene was dispersed into each vegetable thleatoncentration of 10 mg/mL,
and the residues were dissolved by sonication irceycold bath (SUS-300, Shimadzu,
Kyoto, Japan) at 300 W for 20 min. Almost no isoizetion of (allE)-lycopene was
observed after the process. From each of the snlyt5:L of sample was withdrawn
with a microsyringe, transferred to a small vialdahe headspace was purged with
argon gas. Immediately, the vessels were tightlysed to minimize the oxygen
exposure and placed in an oil-bath at 100 °C forat 3 h under dark conditions. After
the thermal treatment, each reaction mixture wisedi in 5 mL of benzene and filtered

through a 0.2:m polytetrafluoroethylene membrane filter (Advan€a., Ltd., Tokyo,
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Japan) prior to the HPLC separation.

7.3.4. HPLC analysis

Reversed-phase HPLC analysis with @ €arotenoid column (250 x 4.6 mm inner

diameter, 5um particles, YMC, Kyoto) was conducted according tb@ method

described previously [1]. The quantification &isomers of lycopene was carried out

by peak area integration at 470 nm by a UV-visaetg JASCO Co., Tokyo), and the

peaks were identified according to previous wofks}].

7.4. Results and discussion

Purified (allE)-lycopene samples dissolved in corn and sesareevbiich are nearly

equivalent in IVs and SVs and FA compositions (€aft) [9,10]were thermally

isomerized at 100 °C for 1 h. The resulting lycapenixtures were separated on a

reversed-phase HPLC column. The typical chromatogseach sample is shown in

Figurel, as well as that of intact (&)-lycopene. The predominant mo#esomers

produced were identified according to previous woik—4]and defined spectral data

for (52)-lycopene (Figure 2, 3 and Tables 2, 3). In coiln(féigure 1B), (Z)- and

(132)-lycopene were prevailing except for the Biform, while (%2)-lycopene and
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putative (2,92)- and (2,92)-isomers [11] were significantly increased in sesaoil

(Figure 1C). These mongisomers are often found in the human body as alin

processed tomato products [12,13]. Some peaks ass(multiZ)-lycopene were also

detected in both vegetable oils.

(A) (all-E)
| 1 | | |
S 1(B) (allE)
s
£
o
S
I 9
g (132) 92 (52)
(]
8
<
| | | | |
(C) (all-E)
(132) (92)
(52)
*|\*
1 1 1 | |
30 33 36 39 42 45 48
Time (min)

Figure 1. Reversed-phase HPLC chromatograms of (A)Egllycopene and thermally

treated lycopene at 100 °C for 1 h in (B) corn anld (C) sesame oil. Peaks with

asterisks around the £Blycopene denote the d@Hsomers having B-configuration:

(52,92)-lycopene with the retention time of 40.6 min gbd,92)-lycopene of 41.4 min

[11]. Unidentified peaks contain other moAoand multiZ-isomers.
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Figure 2. 'H NMR spectrum of the purified B-lycopene. (400 MHz, CDG).
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Figure 3. Ultraviolet (UV) spectra of the purified B-lycopene in hexane.
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Thermal isomerization of (alb)-lycopene to th&-isomers was conducted in various

kinds of vegetable oils having different IVs at 1@ for 1 h. The percentage contents

of the isomers obtained are listed in Table 4. fOtal content oZ-lycopene surpassed

58.8% after the heat treatment in sesame oil, Ardvalues attained in the eleven

vegetable oils were higher in the order correspantth sesame > rice bran, grape seed,

safflower seed, soybean, corn, linseed > olivegsapd, perilla > sunflower seed @ik

for the individualZ-isomers generated, profiles of components offigomers were

almost the same amongst the tested vegetable xakpe for sesame oil, in which

(52)-lycopene increased approximately 3-5 times coetgpawith the others.

(52)-Lycopene was estimated to be kinetically unfaktegdut thermodynamically more

stable than @)- and (1Z)-lycopene by the results of quantum chemistry udateons

[14]. The preferential occurrence of (5Z)-lycopdram (all-E)-lycopene in sesame oil

is considered to be independent of the IVs and &\WsFA composition, because these

values were similar to those of corn oil [9,10].ll€ct al. (2013) also indicated that

there was no correlation between these valuestarthal isomerization tendencies of

(all-E)-lycopene by the experiments of using olive astl fils [15]. It can be supposed

that the preference is due to the catalytic ingnetdi in sesame oil, such as iron, which

increased a content of (5Z)-isomer [3] probably lbywering the activation energy
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during isomerization to the corresponding isomd, [16]. In fact, the sesame oil used
in this study contained rich minerals such as iompper, selenium and so on than other
vegetable oils [17]. Interestingly, Lplycopene has been reported to show higher
bioavailability [18] and antioxidant capacity [16bmpared with (alE)-lycopene and
possibly to (2)- and (1Z)-lycopene.

The remaining ratios of total amount of lycopenemsrs without decomposition
were investigated under the above conditions, aed to be high in the following
order: sunflower seed, sesame, soybean, rapeseadotive, safflower seed, rice bran
(79.6—74.2%) > perilla, grape seed (55.8, and 54ré%pectively) > linseed oil (38.8%).
The decomposition of lycopene in oils showing highemaining ratios, such as
sunflower seed and sesame oils, would probablyuppressed by natural antioxidants
contained in the oils, such astocopherol and sesamol, respectively [10]. In ,fact
H-NMR signals at 5.95 and 6.77-6.88 ppm, possikiyved from the spectra of lignan
derivatives [20], were observed in a sesame oitl usethis study (Figure 4). On the
other hand, lycopene was largely degraded in pefithseed, and grape seed oil. The
high IV of these oils brought about the acceleratecomposition of lycopene, because
the double bonds in FAs can undergo the formatibppevoxy radicals harmful to

lycopene [10,15].
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As a practically important criterion, efficiency @fisomerization with vegetable oils

was assessed for théisomers of lycopene in total amount and faf-iSomer,

considering the remaining ratio of total amount lgtopene isomers without

decomposition after the thermal treatment (Figurelrd eight oils, more than 35% of

the efficiency of totalZ-isomerization could be attained for 1 h, wherealy two oils

showed such high efficiency after 3 h (Figure 5Ahen sesame oil was employed, the

efficiency remained above 45% during the periodtetgs and in particular,

(52)-lycopene production was threefold greater tham #lverage of the other oils

(Figure 5B). The thermal-isomerization efficiency of (alk)-lycopene in sesame oil is

estimated to be higher than in common organic stéveuch as acetone, benzene and

hexane: approximately 40% of total-isomers content and less than 3% of

(52)-lycopene content by heating in those solventgnewithout considering the

decomposition of lycopene [4h perilla and linseed oils, however, the efficiescovere

quite low at ca. 5% for total-isomers and less than 0.5% foZ)8ycopene for 3 h,

because high decomposition ratios of lycopene d&parthe high Vs discussed above.
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Figure 4. 'H NMR spectrum of the sesame oil. The signals &nd 6.77-6.88 ppm,
possibly derived from the spectra of lignan dernxext [18].
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Figure 5. Efficiency of E-to-Z isomerization of lycopene in various vegetables.oil
(all-E)-Lycopene was heated at 100 °C for 1 h (solid)oemgl 3 h (shaded bars) in each
oil. The efficiencies of isomerization to (&Ayisomers of lycopene in total amount and
(B) (52)-lycopene were calculated by multiplying the petege content oZ-isomers

by remaining ratio of total amount of lycopene issmwithout decomposition and by

one-hundredth. Error bars indicate the SD frormita@pe samples.
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Chapter 8

Overall conclusion



In this study, we demonstrated the fundamentia dequisition, and thermal-, photo-

and catalystic isomerization of (&)-lycopene, and characterization of an unidentified

Z-isomer of lycopene; (I8-lycopene.

In Chapter 2, the chemical and physical propesiesh as the melting point, UV-vis

spectra, IR spectra and NMR spectra of Edlycopene were obtained using an

extremely purified extract from tomato paste. Thesailts provided a new insight into

the spectroscopic and geometrical properties aidgoe.

In Chapter 3, (1B)-lycopene was thermally generated and purifiednfr@ natural

source, and mainly identified by an NMR technigoiethe first time as a natural origin.

Moreover, the occurrence and availability of th&-i$omer were also discussed on the

basis of the calculation method, which provided ational explanation for the

experimental results obtained.

In Chapter 4, the elaborate UV—-vis and NMR invedtan of lycopene isomers, by

which the molar extinction coefficients of49 and (1Z)-lycopene were determined

for the first time, facilitated an accurate quaaéifion of the concentrations of

Z-isomers formed during heat treatment. The isoragdm rates of the purified

(all-E)-lycopene were examined in seven different solv€atetone, hexane, benzene,

CHCl2, CHCE, CClL, and CHBIr2) at 4 °C and 50 °C. Promoteflisomerization of
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(all-E)-lycopene has been first demonstrated inBitias well as CkCl2 and CHCY at
both temperatures. In GBI2 and CHBr2, (52)-lycopene was generated as the
predominant isomer within the processing time, paelent of the heating temperature;
on the other hand, the Z-3somer was preferentially formed in the other soks.

In Chapter 5, the photoisomerization of @Hycopene taZ-isomers with sensitizer
and filtered light has proven to be more effectiban thermal isomerization. In
particular, the reaction condition with erythrosinenexane under 60 min of irradiation
at wavelengths between 480 and 600 nm was theniegiod to enrich the content of
Z-isomers and suppress the decomposition of lycopenéor the individuakZ-isomers
generated, &-lycopene which has higher bioavailability, antatant capacity, and
greater storage stability among tlZeisomers was increased significantly by the
photosensitize®/Z isomerization.

In Chapter 6, (alk)-lycopene was isomerized #@isomers efficiently and largely
without decomposition by employing an appropriatdvent and concentration of
iron(Ill) chloride as catalyst under optimized tesmgture: the isomerization ratio of
(all-E)-lycopene (0.1 mg/mL) t&-isomers and the total amounts of the remaining
lycopene were attained at 79.9% and 96.5%, resgdgtiwith 1.0 x 10° mg/mL

iron(lll) chloride in acetone for 3 h at 60 °C.
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In Chapter 7, the thermal isomerization of @iycopene in edible vegetable oils
was investigated for individuakZ-isomers of lycopene quantitatively, and has
demonstrated to be highly effective to obtain gwniers with ease for food processing.
Especially in sesame oil, highly functionakZjdycopene was increased significantly.

These findings will contribute to the fundamenthkemistry of lycopene, and the
development of facile isomerization of (&)-lycopene toZ-isomers in the fields of

food, drink, and dietary supplement manufacturing.
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